Comparing genetic diversity, genetic differentiation, and performance between native and nonnative populations has advanced our knowledge of contemporary evolution and its ecological consequences. However, such between‐range comparisons can be complicated by high among‐population variation within native and nonnative ranges. For example, native vs. nonnative comparisons between small and non‐representative subsets of populations for species with very large distributions have the potential to mislead because they may not sufficiently account for within‐range adaptation to climatic conditions, and demographic history that may lead to non‐adaptive evolution. We used the cosmopolitan weed Conyza canadensis to study the interplay of adaptive and demographic processes across, to our knowledge, the broadest climatic gradient yet investigated in this context. To examine the distribution of genetic diversity, we genotyped 26 native and 26 nonnative populations at 12 microsatellite loci. Furthermore, we recorded performance traits for 12 native and 13 nonnative populations in the field and in the common garden. To analyze how performance was related to range and/or climate, we fit pedigree mixed‐effects models. These models weighed the population random effect for co‐ancestry to account for the influence of demographic history on phenotypic among‐population differentiation. Genetic diversity was very low, selfing rates were very high, and both were comparable between native and nonnative ranges. Nonnative populations out‐performed native populations in the field. However, our most salient result was that both neutral genetic differentiation and common garden performance were far more correlated with the climatic conditions from which populations originated than native vs. nonnative range affiliation. Including co‐ancestry of our populations in our models greatly increased explained variance and our ability to detect significant main effects for among‐population variation in performance. High propagule pressure and high selfing rates, in concert with the ability to adapt rapidly to climatic gradients, may have facilitated the global success of this weed. Neither native nor nonnative populations were homogeneous groups but responded comparably to similar environments in each range. We suggest that studies of contemporary evolution should consider widely distributed and genotyped populations to disentangle native vs. nonnative range effects from varying adaptive processes within ranges and from potentially confounding effects of demographic history.
Summary Optimal defence allocation theory (ODT) is one of the most prominent theoretical frameworks to explain the allocation of defence compounds within plants. It predicts that the most valuable and vulnerable plant organs have the highest levels of chemical defence. The ODT has been well worked out and experimentally tested for shoot defences, but not for root defences. To assess if ODT principles apply similarly to roots and shoots, we examined glucosinolates in above‐ground and below‐ground organs of nine plant species belonging to two families. In order to evaluate whether ODT equally applies to shoot and root organs, we designed a conceptual model in which above‐ground and below‐ground organs were assigned to orders of importance to plant performance. We hypothesized that organs constituting the plant's core structure are better protected than more distal organs. The nine plant species were cultivated, and their roots and shoots were harvested and divided into three orders for glucosinolate analysis. Using a specialist (Delia radicum) and a generalist (Amphimallon solstitiale) root herbivore, we also experimentally tested the hypothesis that the generalist herbivore prefers to feed on fine roots (FRs) with a low glucosinolate concentration, while the specialist prefers taproots (TRs) with a high glucosinolate concentration. We found that both in roots and shoots, the higher ordered core structural organs (TRs and stems) had the highest levels of glucosinolates. Below‐ground, TRs and lateral roots were better protected than the more distal, and less costly, FRs in seven out of nine species tested. The specialist root herbivore preferred feeding on the highly defended TRs, which is in line with what has been found for above‐ground specialist herbivores. Moreover, the glucosinolate concentration in roots overall was significantly higher than that in shoots. Synthesis. These results support the hypothesis that Optimal defence allocation theory (ODT) generally applies to glucosinolate allocation in above‐ground and below‐ground organs and may mainly serve to maintain the integrity of the main plant structure. Moreover, it suggests that above‐ground and below‐ground insect herbivores independently exert similar selection pressures on defence allocation patterns in roots and shoots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.