We conducted three-dimensional (3D) reconstruction of oral tongue squamous cell carcinoma (OTSCC) using serial histological sections to visualize the architecture of invasive tumors. Fourteen OTSCC cases were collected from archival paraffin-embedded specimens. Based on a pathodiagnostic survey of whole cancer lesions, a core tissue specimen (3 mm in diameter) was dissected out from the deep invasion front using a paraffin tissue microarray. Serial sections (4 μm thick) were double immunostained with pan-cytokeratin and Ki67 antibodies and digitized images were acquired using virtual microscopy. For 3D reconstruction, image registration and RGB color segmentation were automated using ImageJ software to avoid operator-dependent subjective errors. Based on the 3D tumor architecture, we classified the mode of invasion into four types: pushing and bulky architecture; trabecular architecture; diffuse spreading; and special forms. Direct visualization and quantitative assessment of the parenchymal-stromal border provide a new dimension in our understanding of OTSCC architecture. These 3D morphometric analyses also ascertained that cell invasion (individually and collectively) occurs at the deep invasive front of the OTSCC. These results demonstrate the advantages of histology-based 3D reconstruction for evaluating tumor architecture and its potential for a wide range of applications.
The results indicated that the 2D SCC focus isolation could not be regarded as invasion but that the SCC foci surrounded by perlecan-positive stroma (modes 2 and 3) could be regarded as a more objective measure for invasion of SCC. This is the first 3D tissue-level demonstration of the neoplastic stroma space induced with oral SCC invasion, the presence of which we have predicted based on our previous 2D and tissue culture evidence.
A dematiaceous hyphomycete, isolated from frogs, was determined as the possible etiologic agent of a case of systemic chromomycosis this cold-blooded animal. The fungus was identified as Veronaea botryosa on the basis of morphological features observed in histopathological examination and molecular phylogenetic evidence. Although V. botryosa is known to be distributed widely in litter and as a human pathogen, this is the first confirmed report of its involvement in a lethal infection in a cold-blooded animal, including an anuran.
Box C/D-type small nucleolar RNAs (snoRNAs) are functional RNAs responsible for mediating 2′-O-ribose methylation of ribosomal RNAs (rRNAs) within the nucleolus. In the past years, evidence for the involvement of human U50 snoRNA in tumorigenesis has been accumulating. We previously identified U50HG, a non-protein-coding gene that hosted a box C/D-type U50 snoRNA, in a chromosomal breakpoint in a human B-cell lymphoma. Mouse genome analysis revealed four mouse U50 (mU50) host-genes: three mU50HG-a gene variants that were clustered in the genome and an mU50HG-b gene that we supposed to be the U50HG ortholog. In this study, to investigate the physiological importance of mU50 snoRNA and its involvement in tumorigenesis, we eliminated mU50 snoRNA sequences from the mU50HG-b gene. The established mouse line (ΔmU50(HG-b)) showed a significant reduction of mU50 snoRNA expression without alteration of the host-gene length and exon-intron structure, and the corresponding target rRNA methylation in various organs was reduced. Lifelong phenotypic monitoring showed that the ΔmU50(HG-b) mice looked almost normal without accelerated tumorigenicity; however, a notable difference was the propensity for anomalies in the lymphoid organs. Transcriptome analysis showed that dozens of genes, including heat shock proteins, were differentially expressed in ΔmU50(HG-b) mouse lymphocytes. This unique model of a single snoRNA knockdown with intact host-gene expression revealed further new insights into the discrete transcriptional regulation of multiple mU50 host-genes and the complicated dynamics involved in organ-specific processing and maintenance of snoRNAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.