Convective self‐aggregation (CSA) in an idealized modeling framework is key to understanding the role of clouds. To investigate the existence of characteristic length of CSA onset, we conducted systematic cloud‐resolving simulations, with a scope covering the horizontal domain size and resolution. In the high‐resolution simulation, CSA can occur with a square domain larger than ~500 km. Based on the competition between two near‐surface horizontal divergent flows, we discuss the characteristic length existence. While the flow induced by radiative cooling in the subsidence region acts as positive feedback for moisture perturbation and scales with the domain size, the other flow induced by evaporative cooling of falling rain in the convective region acts as negative feedback and does not scale. The study suggests characteristic length existence for the organization of moist convection, even in real‐world conditions.
The organization of clouds has been widely studied by numerical modeling as an essential problem in climate science. Convective self-aggregation (CSA) occurs in radiative-convective equilibrium when the model domain size is sufficiently large. However, we have not yet reached a comprehensive understanding of the mechanism of CSA onset. This study argues that low-level circulation is responsible for horizontal moisture transport and that its coupling with variabilities of diabatic heating and moisture in the free troposphere is essential. We simulated scattered and aggregated convection by varying the domain size as a control parameter constraining the horizontal scale associated with the CSA onset. Based on a new analysis method quantifying the circulation spanning dry and moist regions, we found that 1) the upgradient moisture transport in the aggregated cases is associated with low-level circulation development, amplifying the horizontal moisture contrast, 2) the horizontal buoyancy gradient due to strong radiative cooling in the dry region intensifies the low-level circulation, 3) the free-tropospheric subsidence intrudes into the boundary layer in the dry region preceding the intensification of low-level circulation, and 4) the subsidence intrusion is due to a weakening of convective heating in the free troposphere associated with the moisture variability at a larger horizontal scale. This study provides new insights into the organization mechanism of clouds unifying the different mechanisms impacting CSA: the free-tropospheric moisture, radiation, convection, and low-level circulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.