Bandgap engineering of strain-balanced InGaAs/GaAsP multiple quantum wells (MQWs) allows high-quality materials with an absorption edge beyond GaAs to be epitaxially grown in Ge/GaAs-based multijunction solar cells. We demonstrate MQW solar cells with effective bandgaps ranging from 1.31 eV to as low as 1.15 eV. The bandgap-voltage-offset of MQWs is found to be independent of effective bandgaps and superior to a bulk reference by approximately 0.1 V. This implies the merit of high photovoltage as compared with bulk cells with the same bandgap in addition to their widely bandgap-tunable property. Towards the realization of fully lattice-matched quad-junction devices, we demonstrate a 70-period, 1.15-eV bandgap MQW cell as a promising material in 0.66/1.15/1.51/1.99-eV quad-junction cells, whose practical efficiency has a potential to achieve over 50%. With such a large period number of MQWs, the reverse-biased external quantum efficiency reaches an average of over 60% in the spectral region corresponding to a 1.15-eV subcell; this is achieved with only a-few-percent drop at short-circuit condition. The device presented here reaches the target open-circuit voltage and over 75% of the current density required for realizing a 1.15-eV subcell in a 50%-efficient quad-junction solar cell. We believe that future devices which exploit light-trapping structures and enhanced carrier extraction will be able to reach the desired target.
A series of strained GaAsBi/GaAs multiple quantum well diodes are characterised to assess the potential of GaAsBi for photovoltaic applications. The devices are compared with strained and strain-balanced InGaAs based devices. The dark currents of the GaAsBi based devices are around 20 times higher than those of the InGaAs based devices. The GaAsBi devices that have undergone significant strain relaxation have dark currents that are a further 10–20 times higher. Quantum efficiency measurements show the GaAsBi devices have a lower energy absorption edge and stronger absorption than the strained InGaAs devices. These measurements also indicate incomplete carrier extraction from the GaAsBi based devices at short circuit, despite the devices having a relatively low background doping. This is attributed to hole trapping within the quantum wells, due to the large valence band offset of GaAsBi
Abstract. Multi-junction solar cells achieve high efficiency by stacking sub-cells of different bandgaps (typically GaInP/GaAs/Ge) resulting in efficiencies in excess of 40%. The efficiency can be improved by introducing a 1 eV absorber into the stack, either replacing Ge in a triplejunction configuration or on top of Ge in a quad-junction configuration. GaAs 0.94 Bi 0.06 yields a direct-gap at 1 eV with only 0.7% strain on GaAs and the feasibility of the material has been demonstrated from GaAsBi photodetector devices. The relatively high absorption coefficient of GaAsBi suggests sufficient current can be generated to match the sub-cell photocurrent from the other sub-cells of a standard multi-junction solar cell. However, minority carrier transport and background doping levels place constraints on both p/n and p-i-n diode configurations. In the possible case of short minority carrier diffusion lengths we recommend the use of a p-i-n diode, and predict the material parameters that are necessary to achieve high efficiencies in a GaInP/GaAs/GaAsBi/Ge quad-junction cell.
Quantum wires (QWRs) form naturally when growing strain balanced InGaAs/GaAsP multi-quantum wells (MQW) on GaAs [100] 6° misoriented substrates under the usual growth conditions. The presence of wires instead of wells could have several unexpected consequences for the performance of the MQW solar cells, both positive and negative, that need to be assessed to achieve high conversion efficiencies. In this letter, we study QWR properties from the point of view of their performance as solar cells by means of transmission electron microscopy, time resolved photoluminescence and external quantum efficiency (EQE) using polarised light. We find that these QWRs have longer lifetimes than nominally identical QWs grown on exact [100] GaAs substrates, of up to 1 μs, at any level of illumination. We attribute this effect to an asymmetric carrier escape from the nanostructures leading to a strong 1D-photo-charging, keeping electrons confined along the wire and holes in the barriers. In principle, these extended lifetimes could be exploited to enhance carrier collection and reduce dark current losses. Light absorption by these QWRs is 1.6 times weaker than QWs, as revealed by EQE measurements, which emphasises the need for more layers of nanostructures or the use light trapping techniques. Contrary to what we expected, QWR show very low absorption anisotropy, only 3.5%, which was the main drawback a priori of this nanostructure. We attribute this to a reduced lateral confinement inside the wires. These results encourage further study and optimization of QWRs for high efficiency solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.