[1] Changes in the Baiu rainband owing to global warming are assessed by the pseudo global warming downscaling method (PGW-DS). The PGW-DS is similar to the conventional dynamical downscaling method using a regional climate model (RCM), but the boundary conditions of the RCM are obtained by adding the difference between the future and present climates simulated by coupled general circulation models (CGCMs) into the 6-hourly reanalysis data in a control period. We conducted the multiple PGW-DS runs using the selected Coupled Model Intercomparison Project Phase 3 (CMIP3) multimodel data set, giving better performance around East Asia in June, and the PGW-DS run using the multiselected CGCM model ensemble mean (PGW-MME run). The PGW-MME and PGW-DS runs show an increase in precipitation over the Baiu rainband and the southward shift of the Baiu rainband. The PGW-MME run has good similarity to the average of all PGW-DS runs. This fact indicates that an average of the multiple PGW-DS runs can be replaced by a single PGW-DS run using the multiselected CGCM ensemble mean, reducing the significant computational expense. In comparison with the GCM projections, the PGW-DS runs reduce the intermodel variability in the Baiu rainband caused by the CGCMs themselves.
In this study, the impact of global climate change and anticipated urbanization over the next 70 years is estimated with regard to the summertime local climate in the Tokyo metropolitan area (TMA), whose population is already near its peak now. First, five climate projections for the 2070s calculated with the aid of general circulation models (GCMs) are used for dynamical downscaling experiments to evaluate the impact of global climate changes using a regional climate model. Second, the sensitivity of future urbanization until the 2070s is examined assuming a simple developing urban scenario for the TMA. These two sensitivity analyses indicate that the increase in the surface air temperature from the 1990s to the 2070s is about 2.08C as a result of global climate changes under the A1B scenario in the Intergovernmental Panel on Climate Change's Special Report on Emissions Scenarios (SRES) and about 0.58C as a result of urbanization. Considering the current urban heat island intensity (UHII) of 1.08C, the possible UHII in the future reaches an average of 1.58C in the TMA. This means that the mitigation of the UHII should be one of the ways to adapt to a local temperature increase caused by changes in the future global climate. In addition, the estimation of temperature increase due to global climate change has an uncertainty of about 2.08C depending on the GCM projection, suggesting that the local climate should be projected on the basis of multiple GCM projections.
Evaluations of the summer/winter Asian monsoon through the late 20th century (1981)(1982)(1983)(1984)(1985)(1986)(1987)(1988)(1989)(1990)(1991)(1992)(1993)(1994)(1995)(1996)(1997)(1998)(1999)(2000) were conducted on the basis of model simulations using 20 Coupled Model Intercomparison Project Phase 3 (CMIP3) and 24 Phase 5 (CMIP5) multi-model datasets, and comparisons of the results with many types of observational data. Skill metrics have been calculated in terms of reproducibility of seasonal mean structures. The projected thermal structure of the mid to upper troposphere, which is an important driving force of the Asian monsoon, was also evaluated. Overall, the skills of the CMIP5 multi-model ensemble (MME) mean results have been improved, as compared with those of the CMIP3 MME.Considering these evaluations, we examined projected future (2081-2100) changes in the summer/winter Asian monsoon, including those of the tropical Hadley-Walker circulation, for mid-range emission scenarios (SRES-A1B for CMIP3 and RCP4.5 for CMIP5). The CMIP3 MME shows projected increases in precipitation and attenuation of circulation over broad regions of Asia. This so-called "wind-precipitation paradox" is a characteristic property of the Asian monsoon under a CO 2 -rich atmosphere. The CMIP5 MME, on the other hand, shows a projected acceleration of climatological low-level monsoon westerlies, particularly in subtropical regions (10°-20°N), which therefore requires a partial revision of the wind-precipitation paradox. In terms of meridional temperature gradients (MTGs), the CMIP5 MME datasets project marked mid to upper tropospheric warming over the western Indian Ocean, as compared with other regions of the Indian and western Pacific oceans. At higher latitudes, the projected warming rate is relatively small to the northwest of the Tibetan Plateau, and projected MTGs are reduced in this region. In the summer Asian monsoon, the different circulation change between CMIP3 and CMIP5 MME despite the common MTG weakening is a notable feature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.