The cross-tie wall is a kind of magnetic domain wall composed of a main straight wall and crossing subwalls and observed in magnetic thin films. This wall contains two kinds of magnetic vortex structures: “circular vortex” and “antivortex.” At the cores of both vortices, the existence of a spot with perpendicular magnetization has been theoretically predicted. We have detected the perpendicular magnetization spots at each vortex core and identified the direction of it by applying magnetic force microscopy imaging to cross-tie walls in patterned rectangular thin permalloy (Ni80Fe20) films. We also fabricated magnetic structures that contain only antivortex by engineering the shape of thin films.
A major challenge in robotic design is enabling robots to immediately adapt to unexpected physical damage. However, conventional robots require considerable time (more than several tens of seconds) for adaptation because the process entails high computational costs. To overcome this problem, we focus on a brittle star—a primitive creature with expendable body parts. Brittle stars, most of which have five flexible arms, occasionally lose some of them and promptly coordinate the remaining arms to escape from predators. We adopted a synthetic approach to elucidate the essential mechanism underlying this resilient locomotion. Specifically, based on behavioural experiments involving brittle stars whose arms were amputated in various ways, we inferred the decentralized control mechanism that self-coordinates the arm motions by constructing a simple mathematical model. We implemented this mechanism in a brittle star-like robot and demonstrated that it adapts to unexpected physical damage within a few seconds by automatically coordinating its undamaged arms similar to brittle stars. Through the above-mentioned process, we found that physical interaction between arms plays an essential role for the resilient inter-arm coordination of brittle stars. This finding will help develop resilient robots that can work in inhospitable environments. Further, it provides insights into the essential mechanism of resilient coordinated motions characteristic of animal locomotion.
Graphene was directly grown on r-plane (1-102), c-plane (0001), and a-plane (11-20) sapphires by low pressure chemical vapor deposition without the use of a metal catalyst. The growth temperature was systematically changed between 1090 and 1210 °C to investigate the effects of the crystal orientation of sapphire on the graphene growth. It was found that the growth rate of graphene on r-plane sapphire was very fast compared to that of the samples grown on other orientations. The surface catalytic effect of r-plane sapphire promotes the smooth and flat growth of single-layer graphene. The surface of the r-plane sapphire was kept smooth even at a high temperature of 1210 °C because a quick coverage of graphene protects the surface of the sapphire from thermal decomposition and roughening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.