Experimental pulmonary hypertension induced in a hypobaric hypoxic environment (HHE) is characterized by structural remodeling of the heart and pulmonary arteries. Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) both have diuretic, natriuretic, and hypotensive effects, and both are involved in cardiovascular homeostasis as cardiac hormones. To study the effects of HHE on the natriuretic peptide synthesis system, 170 male Wistar rats were housed in a chamber at the equivalent of the 5500-m altitude level for 1-12 weeks. After 1 week of HHE, pulmonary arterial pressure was significantly raised, and the ratio of left ventricle plus septum over right ventricle of the heart showed a significant decrease (compared with those of ground-level control rats). In both ventricular tissues, the expression of ANP messenger (m)RNA and BNP mRNA increased after exposure to HHE. The amounts of ANP and BNP had decreased significantly in right atrial tissue at 12 weeks of HHE (compared with those of the controls), whereas in ventricular tissues at the same time point, both levels had increased significantly. In in situ hybridization and immunohistochemical studies, the staining of the mRNAs for ANP and BNP and of ANP and BNP themselves was more intense in both ventricular tissues after exposure to HHE than before (i.e., in the controls). The results suggest that, in response to HHE, the changes in ventricular synthesis are similar for ANP and BNP. These changes may play a role in modulating pulmonary hypertension in HHE. However, under our conditions, pulmonary hypertension increased progressively throughout the HHE period.
Experimental pulmonary hypertension induced in a hypobaric hypoxic environment (HHE) is characterized by structural remodeling of the heart and pulmonary arteries. Adrenomedullin (AM) has diuretic, natriuretic, and hypotensive effects. To study the possible effects of HHE on the AM synthesis system, 150 male Wistar rats were housed in a chamber at the equivalent of a 5,500-m altitude level for 21 days. After 14 days of exposure to HHE, pulmonary arterial pressure (PAP) was significantly increased (compared with control rats). The plasma AM protein level was significantly increased on day 21 of exposure to HHE. In the right ventricle (RV), right atrium, and left atrium of the heart, the expressions of AM mRNA and protein were increased in the middle to late phase (5-21 days) of HHE, whereas in the brain and lung they were increased much earlier (0.5-5 days). In situ hybridization and immunohistochemistry showed AM mRNA and protein staining to be more intense in the RV in animals in the middle to late phase of HHE exposure than in the controls. During HHE, these changes in AM synthesis, which occurred strongly in the RV, occurred alongside the increase in PAP. Conceivably, AM may play a role in modulating pulmonary hypertension in HHE.
Experimental pulmonary hypertension induced in a hypobaric hypoxic environment (HHE) is characterized by structural remodelling of the heart. In rat cardiac ventricles, pressure and volume overload are well known to be associated with changes in cardiac myosin heavy chain (MHC) isoforms. To study the effects of HHE on the MHC profile in the ventricles, 83 male Wistar rats were housed in a chamber at the equivalent of 5500 m altitude for 1-8 weeks. Pulmonary arterial pressure, right ventricular free wall (RVFW) weight, the ratio of RVFW weight over body weight (BW), the ratio of left ventricular free wall (LVFW) weight over BW, and myocyte diameter in both ventricles showed significant increases after 1 week, 2 weeks, 1 week, 6 weeks, and 4 weeks of HHE, respectively. Semi-quantitative reverse transcriptase-polymerase chain reaction revealed that beta-MHC mRNA expression was increased significantly in both ventricles at 6 and 8 weeks of HHE, whereas alpha-MHC mRNA expression was decreased significantly at 6 and 8 weeks of HHE in the right ventricle (RV) and at 6 weeks of HHE in the left ventricle (LV). The percentage of myosin containing the beta-MHC isoform was increased significantly at 4-8 weeks of HHE in RV and at 6 weeks of HHE in LV. In situ hybridization showed that the area of strong staining for beta-MHC mRNA was increased in both ventricles at 8 weeks of HHE, and showed a decrease from RVFW to cardiac septum, and from cardiac septum to LVFW. These results suggest that HHE has a significant effect on the expression of both MHC mRNA and protein in the heart, particularly in RV. These changes may reflect a role for cardiac MHC in the response to pulmonary hypertension in HHE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.