Cellular responses to injury are crucial for complete tissue regeneration, but their underlying processes remain incompletely elucidated. We have previously reported that myeloid-defective zebrafish mutants display apoptosis of regenerative cells during fin fold regeneration. Here, we found that the apoptosis phenotype is induced by prolonged expression of interleukin 1 beta (il1b). Myeloid cells are considered to be the principal source of Il1b, but we show that epithelial cells express il1b in response to tissue injury and initiate the inflammatory response, and that its resolution by macrophages is necessary for survival of regenerative cells. We further show that Il1b plays an essential role in normal fin fold regeneration by regulating expression of regeneration-induced genes. Our study reveals that proper levels of Il1b signaling and tissue inflammation, which are tuned by macrophages, play a crucial role in tissue regeneration.DOI:
http://dx.doi.org/10.7554/eLife.22716.001
Early administration of TLV, compared to increased FRM dosage, reduces the incidence of WRF in real-world elderly ADHF patients. In addition, it reduces the occurrence of 'worse' WRF-persistent and late-onset WRF-which are associated with increased rates of cardiac death or readmission for worsening heart failure in the 90 days after discharge.
Multicellular organisms maintain body integrity by constantly regenerating tissues throughout their lives; however, the overall mechanism for regulating regeneration remains an open question. Studies of limb and fin regeneration in teleost fish and urodeles have shown the involvement of a number of locally activated signals at the wounded site during regeneration. Here, we demonstrate that a diffusible signal from a distance also play an essential role for regeneration. Among a number of zebrafish mutants, we found that the zebrafish cloche (clo) and tal1 mutants, which lack most hematopoietic tissues, displayed a unique regeneration defect accompanying apoptosis in primed regenerative tissue. Our analyses of the mutants showed that the cells in the primed regenerative tissue are susceptible to apoptosis, but their survival is normally supported by the presence of hematopoietic tissues, mainly the myeloid cells. We further showed that a diffusible factor in the wild-type body fluid mediates this signal. Thus, our study revealed a novel mechanism that the hematopoietic tissues regulate tissue regeneration through a diffusible signal.
Gasdermin D (GSDMD)-mediated macrophage pyroptosis plays a critical role in inflammation and host defense. Plasma membrane perforation elicited by caspase-cleaved GSDMD N-terminal domain (GSDMD-NT) triggers membrane rupture and subsequent pyroptotic cell death, resulting in release of pro-inflammatory IL-1β and IL-18. However, the biological processes leading to its membrane translocation and pore formation are not fully understood. Here, using a proteomics approach, we identified fatty acid synthase (FASN) as a GSDMD-binding partner and demonstrated that post-translational palmitoylation of GSDMD at Cys191/Cys192 (human/mouse) led to membrane translocation of GSDMD-NT but not full-length GSDMD. GSDMD lipidation, mediated by palmitoyl acyltransferases ZDHHC5/9 and facilitated by LPS-induced reactive oxygen species (ROS), was essential for GSDMD pore-forming activity and pyroptosis. Inhibition of GSDMD palmitoylation with palmitate analog 2-bromopalmitate or a cell permeable GSDMD-specific competing peptide suppressed pyroptosis and IL-1β release in macrophages, mitigated organ damage, and extended the survival of septic mice. Collectively, we establish GSDMD-NT palmitoylation as a key regulatory mechanism controlling GSDMD membrane localization and activation, providing a novel target for modulating immune activity in infectious and inflammatory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.