Macrophages are effector cells of the innate immune system that phagocytose bacteria and secrete both pro-inflammatory and antimicrobial mediators. In addition, macrophages play an important role in eliminating diseased and damaged cells through their programmed cell death. Generally, macrophages ingest and degrade dead cells, debris, tumor cells, and foreign materials. They promote homeostasis by responding to internal and external changes within the body, not only as phagocytes, but also through trophic, regulatory, and repair functions. Recent studies demonstrated that macrophages differentiate from hematopoietic stem cell-derived monocytes and embryonic yolk sac macrophages. The latter mainly give rise to tissue macrophages. Macrophages exist in all vertebrate tissues and have dual functions in host protection and tissue injury, which are maintained at a fine balance. Tissue macrophages have heterogeneous phenotypes in different tissue environments. In this review, we focused on the phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis for a better understanding of the role of tissue macrophages in several pathological conditions.
Inflammatory bowel disease (IBD) results from a complex series of interactions between susceptibility genes, the environment, and the immune system. Recently, some studies provided strong evidence that the process of autophagy affects several aspects of mucosal immune responses. Autophagy is a cellular stress response that plays key roles in physiological processes, such as innate and adaptive immunity, adaptation to starvation, degradation of aberrant proteins or organelles, antimicrobial defense, and protein secretion. Dysfunctional autophagy is recognized as a contributing factor in many chronic inflammatory diseases, including IBD. Autophagy plays multiple roles in IBD pathogenesis by altering processes that include intracellular bacterial killing, antimicrobial peptide secretion by Paneth cells, goblet cell function, proinflammatory cytokine production by macrophages, antigen presentation by dendritic cells, and the endoplasmic reticulum stress response in enterocytes. Recent studies have identified susceptibility genes involved in autophagy, such as NOD2, ATG16L1, and IRGM, and active research is ongoing all over the world. The aim of this review is a systematic appraisal of the current literature to provide a better understanding of the role of autophagy in the pathogenesis of IBD. Understanding these mechanisms will bring about new strategies for the treatment and prevention of IBD.
Amyloid tends to deposit in the gastrointestinal tract, which, being easily accessible, is often the target organ for a pathological diagnostic examination. Although a mucosal biopsy is necessary for a definitive diagnosis and several studies have reported positive results for each possible biopsy site, there remain many unclear features in various aspects. This review focuses on the current literature to determine a better understanding of the diagnosis from endoscopic and histological views in patients with systemic amyloidosis with gastrointestinal involvement. A literature search was performed using PubMed to identify relevant studies; linked references were also reviewed. Endoscopic findings vary based on the organ and the depositing amyloids. A fine granular appearance or polypoid protrusions are likely to occur in the duodenum. AL, Aβ2M, and ATTR amyloids are likely to deposit submucosally, while AA amyloid is easily deposited in the superficial layer of the mucous membrane. Furthermore, it is necessary to consider the collection of biopsy specimens from the duodenum, which has high positive biopsy rates. However, the difference in the positive biopsy rates depends on whether endoscopic findings are available or whether the appropriate number has not been fully elucidated. A duodenal biopsy is strongly recommended to confirm the deposition of amyloid in patients with systemic amyloidosis having gastrointestinal involvement. Because amyloidosis is a disease with a poor prognosis, early diagnosis and treatment are required; gastroenterologists and endoscopists play important roles.
Inflammatory bowel disease (IBD) is an idiopathic chronic and recurrent condition that comprises Crohn’s disease and ulcerative colitis. A pancreatic lesion is one of the extraintestinal lesions in patients with IBD. Acute pancreatitis is the representative manifestation, and various causes of pancreatitis have been reported, including those involving adverse effects of drug therapies such as 5-aminosalicylic acid and thiopurines, gall stones, gastrointestinal lesions on the duodenum, iatrogenic harm accompanying endoscopic procedures such as balloon endoscopy, and autoimmunity. Of these potential causes, autoimmune pancreatitis (AIP) is a relatively newly recognized disease and is being increasingly diagnosed in IBD. AIP cases can be divided into type 1 cases involving lymphocytes and IgG4-positive plasma cells, and type 2 cases primarily involving neutrophils; the majority of AIP cases complicating IBD are type 2. The association between IBD and chronic pancreatitis, exocrine pancreatic insufficiency, pancreatic cancer, etc. has also been suggested; however, studies with high-quality level evidence are limited, and much remains unknown. In this review, we provide an overview of the etiology of pancreatic manifestation in patients with IBD.
Autophagy, an intracellular degradation mechanism, has many immunological functions and is a constitutive process necessary for maintaining cellular homeostasis and organ structure. One of the functions of autophagy is to control the innate immune response. Many studies conducted in recent years have revealed the contribution of autophagy to the innate immune response, and relationships between this process and various diseases have been reported. Inflammatory bowel disease is an intractable disorder with unknown etiology; however, immunological abnormalities in the intestines are known to be involved in the pathology of inflammatory bowel disease, as is dysfunction of autophagy. In Crohn’s disease, many associations with autophagy-related genes, such as ATG16L1, IRGM, NOD2, and others, have been reported. Abnormalities in the ATG16L1 gene, in particular, have been reported to cause autophagic dysfunction, resulting in enhanced production of inflammatory cytokines by macrophages as well as abnormal function of Paneth cells, which are important in intestinal innate immunity. In this review, we provide an overview of the autophagy mechanism in innate immune cells in inflammatory bowel disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.