FlaK is an NtrC-type activator of the AAA+ ATPase subfamily of σ
54
-dependent promoters of flagellar genes. FlhG, a MinD-like ATPase, negatively regulates the polar flagellar number by collaborating with FlhF, an FtsY-like GTPase.
Vibrio alginolyticus has a flagellum at the cell pole, and the fla genes, involved in its formation, are hierarchically regulated in several classes. FlaK (also called FlrA) is an ortholog of Pseudomonas aeruginosa FleQ, an AAA+ ATPase that functions as a master regulator for all later fla genes. In this study, we conducted mutational analysis of FlaK to examine its ATPase activity, ability to form a multimeric structure, and function in flagellation. We cloned flaK and confirmed that its deletion caused a non-flagellated phenotype. We substituted amino acids at the ATP binding/hydrolysis site and performed putative subunit interfaces in a multimeric structure. Mutations in the aforementioned sites abolished both ATPase activity and the ability of FlaK to induce downstream flagellar gene expression. The L371E mutation, at the putative subunit interface, abolished flagellar gene expression but retained ATPase activity, suggesting that ATP hydrolysis is not sufficient for flagellar gene expression. We also found that FlhG, a negative flagellar biogenesis regulator, suppressed the ATPase activity of FlaK. The 20 FlhG C-terminal residues are critical for reducing FlaK ATPase activity. Chemical crosslinking and size exclusion chromatography revealed that FlaK mostly exists as a dimer in solution and can form multimers, independent of ATP. However, ATP induced the interaction between FlhG and FlaK to form a large complex. The in vivo effects of FlhG on FlaK, such as multimer formation and/or DNA binding, are important for gene regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.