We investigated the ejection of energetic protons from a series of polyatomic hydrocarbon molecules exposed to 790 nm 27 fs laser pulses. Using multiparticle coincidence imaging we were able to decompose the observed proton energy spectra into the contributions of individual fragmentation channels. It is shown that the molecules can completely fragment already at relatively low peak intensities of a few 10(14) W/cm(2), and that the protons are ejected in a concerted Coulomb explosion from unexpectedly high charge states. The observations are in agreement with enhanced ionization taking place at many C-H bonds in parallel.
We report on the direct observation of the phase locking of the attosecond pulse train (APT) via interferometric autocorrelation in the extreme ultraviolet region. APT is formed with Fourier synthesis of high-order harmonic fields of a femtosecond laser pulse. Time-of-flight mass spectra of N+, resulting from the Coulomb explosion of N2 absorbing two photons of APT, efficiently yield correlated signals of APT. The measured autocorrelation trace exhibits that the duration of the pulse should be only 1.3 periods of the extreme ultraviolet carrier frequency. A few interference fringes within the short pulse duration clearly show two types of symmetry, which ensure the phase locking between pulses in APT.
We report on the direct observation of an attosecond pulse train with a mode-resolved autocorrelation technique. The chirp among the three harmonic fields is specified by analyzing two-photon above-threshold ionization spectra of electrons, resulting in a pulse duration that should be shorter than 450 as, which is, to our knowledge, the first determination of the chirp in the attosecond pulse train with an autocorrelation technique. These results will open the way to full characterization of an attosecond pulse train with its envelope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.