The molecular hopping of a lone 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) molecule adsorbed on a Ge(001) surface is studied by density functional theory calculations and the climbing-image nudged elastic band method, in which the PTCDA molecule moves along a trough between two adjacent Ge dimer rows. We confirm the previously reported stable state (SS) structure and determine the transition state (TS) structure during the hopping. The TS exhibits the following characteristic features: PTCDA is almost flat above the surface and the adsorption energy (−1.69 eV) is mostly due to the van der Waals (vdW) interaction. The hopping rate constant calculated from the Gibbs free energy of activation indicates that PTCDA is unlikely to hop at 500 K but likely to hop at about 700 K. From changes of Ge–O bond distances during the hopping, the mechanism is named an “inchworm/cheetah”-like hopping with concerted dimer flipping. The origin of the adsorption energy changes from the chemical interaction plus the vdW interaction at the SS to the vdW interaction at the TS during the hopping. The present study gives an insight that strongly adsorbed planar molecules with functional groups on reactive semiconductor surfaces are more mobile than expected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.