Ligand-mediated drug delivery systems have enormous potential for improving the efficacy of cancer treatment. In particular, Arg-Gly-Asp peptides are promising ligand molecules for targeting αvβ3/αvβ5 integrins, which are overexpressed in angiogenic sites and tumors, such as intractable human glioblastoma (U87MG). We here achieved highly efficient drug delivery to U87MG tumors by using a platinum anticancer drug-incorporating polymeric micelle (PM) with cyclic Arg-Gly-Asp (cRGD) ligand molecules. Intravital confocal laser scanning microscopy revealed that the cRGD-linked polymeric micelles (cRGD/m) accumulated rapidly and had high permeability from vessels into the tumor parenchyma compared with the PM having nontargeted ligand, "cyclic-Arg-Ala-Asp" (cRAD). As both cRGD/m- and cRAD-linked polymeric micelles have similar characteristics, including their size, surface charge, and the amount of incorporated drugs, it is likely that the selective and accelerated accumulation of cRGD/m into tumors occurred via an active internalization pathway, possibly transcytosis, thereby producing significant antitumor effects in an orthotopic mouse model of U87MG human glioblastoma.
Exosomes (extracellular vesicles/EVs) participate in cell–cell communication and contain bioactive molecules, such as microRNAs. However, the detailed characteristics of secreted EVs produced by cells grown under low pH conditions are still unknown. Here, we report that low pH in the cell culture medium significantly affected the secretion of EVs with increased protein content and zeta potential. The intracellular expression level and location of stably expressed GFP‐fused CD63 (an EV tetraspanin) in HeLa cells were also significantly affected by environmental pH. In addition, increased cellular uptake of EVs was observed. Moreover, the uptake rate was influenced by the presence of serum in the cell culture medium. Our findings contribute to our understanding of the effect of environmental conditions on EV‐based cell–cell communication.
Our results indicate that gefitinib may work as a mitochondrial protector against combinational treatment with mitochondria-dependent anticancer agents in high-cell-density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.