Prostaglandin E (PGE)2 produced by osteoblasts acts as a potent stimulator of bone resorption. Inflammatory bone loss is accompanied by osteoclast formation induced by bone-resorbing cytokines, but the mechanism of PGE2 production and bone resorption in vivo is not fully understood. Using cytosolic phospholipase A2α (cPLA2α)-null mice, we examined the role of cPLA2α in PGE2 synthesis and bone resorption. In bone marrow cultures, interleukin (IL)-1 markedly stimulated PGE2 production and osteoclast formation in wild-type mice, but not in cPLA2α-null mice. Osteoblastic bone marrow stromal cells induced the expression of cyclooxygenase (COX)-2 and membrane-bound PGE2 synthase (mPGES) in response to IL-1 and lipopolysaccharide (LPS) to produce PGE2. Osteoblastic stromal cells collected from cPLA2α-null mice also induced the expression of COX-2 and mPGES by IL-1 and LPS, but could not produce PGE2 due to the lack of arachidonic acid release. LPS administration to wild-type mice reduced femoral bone mineral density by increased bone resorption. In cPLA2α-null mice, however, LPS-induced bone loss could not be observed at all. Here, we show that cPLA2α plays a key role in PGE production by osteoblasts and in osteoclastic bone resorption, and suggest a new approach to inflammatory bone disease by inhibiting cPLA2α.
Bone metastasis of breast cancer induces severe osteolysis with increased bone resorption. Osteoclast differentiation regulated by the receptor activator of NF-kB ligand (RANKL) in osteoblasts and matrix degradation induced by matrix metalloproteinases (MMPs) are thought to be involved in the process of bone resorption. When nude mice were inoculated with human breast cancer cells, MDA-MB-231(MDA-231), numerous osteoclasts resorbed bone and the degradation of the bone matrix markedly progressed in the femur and tibia with metastasis of the MDA-231 tumour. The expression of RANKL, MMP-13 and membrane-type 1-MMP mRNA was markedly elevated in bone with metastasis. When MDA-231 cells were cocultured with mouse calvaria, MDA-231 markedly induced bone resorption measured by calcium release from the calvaria, and the expression of RANKL, MMP-2 and MMP-13 was elevated in the calvaria after the coculture. The separation of MDA-231 from the calvaria using filter insert showed decreased bone resorption, suggesting that cell-to-cell interaction is essential for cancer-induced bone resorption. Adding MDA-231 cells to bone marrow cultures markedly induced osteoclast formation, and the expression of RANKL in osteoblasts was enhanced by contact with the cell surface of MDA-231 cells. These results indicate that RANKL-induced osteoclast formation and MMP-dependent matrix degradation are associated with osteolysis because of bone metastasis of breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.