Long-term plasticity of synaptic transmission is assumed to underlie the formation of long-term memory. Although the cellular mechanisms underlying short-term plasticity have been analyzed in detail, the mechanisms underlying the transformation from short-term to long-term plasticity remain largely unrevealed. We propose the novel long-lasting phenomenon as a model system for the analysis of long-term plasticity. We previously reported that the repetitive activation of cAMP-dependent protein kinase (PKA) by forskolin application led to an enhancement in synaptic strength coupled with synaptogenesis that lasted more than 3 weeks in cultured rat hippocampal slices. To elucidate whether this long-lasting synaptic enhancement depended on the induction of long-term potentiation (LTP) or on the pharmacological effect of forskolin, we applied glutamate (Glu) and correlated its dose with the production of the long-lasting synaptic enhancement. When the dose of Glu was low (10, 30 muM), only transient excitation or early-phase LTP (E-LTP) was induced by a single application and no long-lasting synaptic enhancement was produced by three applications. When the dose was raised to 100 or 300 muM, late-phase LTP (L-LTP) was induced by a single application and long-lasting synaptic enhancement was produced by three applications. The Glu-produced enhancement was accompanied by an increase in the frequency (but not the amplitude) of miniature EPSC and the number of synaptic structures. The enhancement depended on the interval of repetition and protein synthesis immediately after the Glu applications. These results indicate that the repetitive induction of L-LTP, but not E-LTP or transient excitation, triggers cellular processes leading to the long-lasting synaptic enhancement and the formation of new synapses.
We have previously shown that repetitive exposures to glutamate (100 muM, 3 min, three times at 24-hr intervals) induced a long-lasting synaptic enhancement accompanied by synaptogenesis in rat hippocampal slice cultures, a phenomenon termed RISE (for repetitive LTP-induced synaptic enhancement). To investigate the molecular mechanisms underlying RISE, we first analyzed the time course of gene expression changes between 4 hr and 12 days after repetitive stimulation using an original oligonucleotide microarray: "synaptoarray." The results demonstrated that changes in the expression of synapse-related genes were induced in two time phases, an early phase of 24-96 hr and a late phase of 6-12 days after the third stimulation. Comprehensive screening at 48 hr after the third stimulation using commercially available high-density microarrays provided candidate genes responsible for RISE. From real-time PCR analysis of these and related genes, two categories of genes were identified, 1) genes previously reported to be induced by physiological as well as epileptic activity (bdnf, grm5, rgs2, syt4, ania4/carp/dclk) and 2) genes involved in cofilin-based regulation of actin filament dynamics (ywhaz, ssh1l, pak4, limk1, cfl). In the first category, synaptotagmin 4 showed a third stimulation-specific up-regulation also at the protein level. Five genes in the second category were coordinately up-regulated by the second stimulation, resulting in a decrease in cofilin phosphorylation and an enhancement of actin filament dynamics. In contrast, after the third stimulation, they were differentially regulated to increase cofilin phosphorylation and enhance actin polymerization, which may be a key step leading to the establishment of RISE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.