Differential diagnosis of small round cell sarcomas (SRCSs) grouped under the Ewing sarcoma family of tumors (ESFT) can be a challenging situation for pathologists. Recent studies have revealed that some groups of Ewing-like sarcoma show typical ESFT morphology but lack any EWSR1-ETS gene fusions. Here we identified a novel gene fusion, CIC-FOXO4, in a case of Ewing-like sarcoma with a t(X;19)(q13;q13.3) translocation. The patient was a 63-year-old man who had an asymptomatic, 30-mm, well-demarcated, intramuscular mass in his right posterior neck, and imaging findings suggested a diagnosis of high-grade sarcoma. He was treated with complete resection and subsequent radiotherapy and chemotherapy. He was alive without local recurrence or distant metastasis 6 months after the operation. Histologic examination revealed SRCS with abundant desmoplastic fibrous stroma suggesting a desmoplastic small round cell tumor. Immunohistochemical analysis showed weak to moderate and partial staining for MIC2 (CD99) and WT1, respectively. High-throughput transcriptome sequencing revealed a gene fusion, and the genomic rearrangement between the CIC and FOXO4 genes was identified by fluorescence in situ hybridization. Aside from the desmoplastic stroma, the CIC-FOXO4 fusion sarcoma showed morphologic and immunohistochemical similarity to ESFT and Ewing-like sarcomas, including the recently described CIC-DUX4 fusion sarcoma. Although clinicopathologic analysis with additional cases is necessary, we conclude that CIC-FOXO4 fusion sarcoma is a new type of Ewing-like sarcoma that has a specific genetic signature. These findings have important implications for the differential diagnosis of SRCS.
Cervical adenocarcinomas are believed to lose estrogen response on the basis of no expression of a nuclear estrogen receptor such as ERα in clinical pathology. Here, we demonstrated that cervical adenocarcinoma cells respond to a physiological concentration of estrogen to upregulate claudin-1, a cell surface molecule highly expressed in cervical adenocarcinomas. Knockout of claudin-1 induced apoptosis and significantly inhibited proliferation, migration, and invasion of cervical adenocarcinoma cells and tumorigenicity in vivo. Importantly, all of the cervical adenocarcinoma cell lines examined expressed a membrane-bound type estrogen receptor, G protein–coupled receptor 30 (GPR30/GPER1), but not ERα. Estrogen-dependent induction of claudin-1 expression was mediated by GPR30 via ERK and/or Akt signaling. In surgical specimens, there was a positive correlation between claudin-1 expression and GPR30 expression. Double high expression of claudin-1 and GPR30 predicts poor prognosis in patients with cervical adenocarcinomas. Mechanism-based targeting of estrogen/GPR30 signaling and claudin-1 may be effective for cervical adenocarcinoma therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.