It is known that some local anesthetics inhibit the growth of budding yeast cells. To investigate the pathway of local anesthetics' action, we isolated and characterized mutants that were hyper-sensitive to tetracaine, and at the same time, temperature-sensitive for growth. They were collectively called las ( l ocal a nesthetic s ensitive) mutants. One of the LAS genes, LAS24, was found to be identical to KOG1, which had been independently discovered as a member of the TOR complex 1 (TORC1). Las24p/Kog1p is a widely conserved TOR binding protein containing the NRC domain, HEAT repeats and WD-40 repeats, but its function remains unknown. Like the tor mutants, the las24 mutants were found to have a defect in cell wall integrity and to show sensitivity to rapamycin. Furthermore, Las24p is required not only in TORC1-mediated (rapamycin-sensitive) pathways such as translation initiation control and phosphorylation of Npr1p and Gln3p, but also for the normal distribution of the actin cytoskeleton, which has been regarded as a TORC2-mediated event. Intriguingly, the temperature-sensitivity of the las24 mutant was suppressed by either activation of Tap42/PPase or by down-regulation of the RAS/cAMP pathway. Suppressors of the temperaturesensitivity of the las24-1 mutant were found not to be effective for suppression of the tetracaine-sensitivity of the same mutant. These observations along with the facts that tetracaine and high temperature differentially affected the las24-1 mutant suggest that Las24p/Kog1p is not a target of tetracaine and that the tetracaine-sensitive step may be one of downstream branches of the TORC1 pathway. Consistent with the broad cellular functions exerted by the TOR pathway, we found that Las24p was associated with membranes and was localized at vacuoles, the plasma membrane and small vesicles.
Action mechanisms of anesthetics remain unclear because of difficulty in explaining how structurally different anesthetics cause similar effects. In Saccharomyces cerevisiae, local anesthetics and antipsychotic phenothiazines induced responses similar to those caused by glucose starvation, and they eventually inhibited cell growth. These drugs inhibited glucose uptake, but additional glucose conferred resistance to their effects; hence, the primary action of the drugs is to cause glucose starvation. In hxt 0 strains with all hexose transporter (HXT) genes deleted, a strain harboring a single copy of HXT1 (HXT1s) was more sensitive to tetracaine than a strain harboring multiple copies (HXT1m), which indicates that quantitative reduction of HXT1 increases tetracaine sensitivity. However, additional glucose rather than the overexpression of HXT1/2 conferred tetracaine resistance to wild-type yeast; therefore, Hxts that actively transport hexoses apparently confer tetracaine resistance. Additional glucose alleviated sensitivity to local anesthetics and phenothiazines in the HXT1m strain but not the HXT1s strain; thus, the glucose-induced effects required a certain amount of Hxt1. At low concentrations, fluorescent phenothiazines were distributed in various membranes. At higher concentrations, they destroyed the membranes and thereby delocalized Hxt1-GFP from the plasma membrane, similar to local anesthetics. These results suggest that the aforementioned drugs affect various membrane targets via nonspecific interactions with membranes. However, the drugs preferentially inhibit the function of abundant Hxts, resulting in glucose starvation. When Hxts are scarce, this preference is lost, thereby mitigating the alleviation by additional glucose. These results provide a mechanism that explains how different compounds induce similar effects based on lipid theory.
High osmolarity and glucose deprivation cause rapid shutdowns of both actin polarization and translation initiation in yeast. Like these stresses, administration of local anesthetics and of antipsychotic phenothiazines caused similar responses. All these drugs have amphiphilic structures and formed emulsions and permeabilized the cell membrane, indicating that they have the same features as a surfactant. Consistently with this, surfactants induced responses similar to those of local anesthetics and phenothiazines. Benzethonium chloride, a cationic surfactant, showed a more potent shutdown activity than phenothiazines, whereas SDS, an anionic surfactant, transiently depolarized actin without inhibiting translation initiation, suggesting that a cationic charge in the amphiphile is important to the shutdown of both reactions. The clinical drugs and the cationic surfactants at low concentrations caused shutdown without membrane permeabilization, suggesting that these compounds and stresses activate shutdown, via perturbation rather than disruption of the cell membrane.
CD1d-restricted invariant NKT (iNKT) cells play crucial roles in various types of immune responses, including autoimmune diseases, infectious diseases and tumor surveillance. The mechanisms underlying their adjuvant functions are well understood. Nevertheless, although IL-4 and IL-10 production characterize iNKT cells able to prevent or ameliorate some autoimmune diseases and inflammatory conditions, the precise mechanisms by which iNKT cells exert immune regulatory function remain elusive. This study demonstrates that the activation of human iNKT cells by their specific ligand α-galactosylceramide enhances IL-12p70 while inhibiting the IL-23 production by monocyte-derived dendritic cells, and in turn down-regulating the IL-17 production by memory CD4+ Th cells. The ability of the iNKT cells to regulate the differential production of IL-12p70/IL-23 is mainly mediated by a remarkable hallmark of their function to produce both Th1 and Th2 cytokines. In particular, the down-regulation of IL-23 is markedly associated with a production of IL-4 and IL-10 from iNKT cells. Moreover, Th2 cytokines, such as IL-4 and IL-13 play a crucial role in defining the biased production of IL-12p70/IL-23 by enhancement of IL-12p70 in synergy with IFN-γ, whereas inhibition of the IFN-γ-promoted IL-23 production. Collectively, the results suggest that iNKT cells modify the IL-12p70/IL-23 balance to enhance the IL-12p70-induced cell-mediated immunity and suppress the IL-23-dependent inflammatory pathologies. These results may account for the long-appreciated contrasting beneficial and adverse consequence of ligand activation of iNKT cells.
We examined a novel rice mutant, Fukei 71 (Oryza sativa L.), for alterations in the levels of hydroxycinnamoyl esters that are linked to cell wall polysaccharides and lignin units. In this mutant, a recessive mutation at a single locus caused the collapse of parenchyma cells in the internodes. Light microscopy revealed that the abnormal walls of internode parenchyma cells of Fukei 71 were stained by the Mäule reaction, which is specific for syringyl units in phenolic compounds. These walls were not stained by Wiesner's reagent (phloroglucinol-HCl), which reacts cinnamaldehyde in lignin. Levels of p-coumaric acid (PCA) and ferulic acid (FA) were apparently elevated in the abnormal tissue of the mutant. Western blotting analysis with antibodies specific for phenylalanine ammonia-lyase (PAL) revealed higher levels of PAL in the abnormal parenchyma tissue of Fukei 71 than in the parenchyma tissue of the parent cultivar Fujiminori. These results and the observation that PAL was produced at a greatly elevated level indicated that the phenylpropanoid pathway that leads to the biosynthesis of polysaccharide-linked FA and PCA was abnormally activated in the irregularly shaped and collapsed internode parenchyma cells, in which the biosynthesis of lignin is normally repressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.