Basophils have been erroneously considered as minor relatives of mast cells, due to some phenotypic similarity between them. While recent studies have revealed non-redundant roles for basophils in various immune responses, basophil-derived effector molecules, including lipid mediators, remain poorly characterized, compared to mast cell-derived ones. Here we analyzed and compared eicosanoids produced by mouse basophils and mast cells when stimulated with IgE plus allergens. The production of 5-LOX metabolites such as LTB4 and 5-HETE was detected as early as 0.5 h post-stimulation in both cell types, even though their amounts were much smaller in basophils than in mast cells. In contrast, basophils and mast cells showed distinct time course in the production of COX metabolites, including PGD2, PGE2 and 11-HETE. Their production by mast cells was detected at both 0.5 and 6 h post-stimulation while that by basophils was detectable only at 6 h. Of note, mast cells showed 8–9 times higher levels of COX-1 than did basophils at the resting status. In contrast to unaltered COX-1 expression with or without stimulation, COX-2 expression was up-regulated in both cell types upon activation. Importantly, when activated, basophils expressed 4–5 times higher levels of COX-2 than did mast cells. In accordance with these findings, the late-phase production of the COX metabolites by basophils was completely ablated by COX-2 inhibitor whereas the early-phase production by mast cells was blocked by COX-1 but not COX-2 inhibitor. Thus, the production of COX metabolites is differentially regulated by COX-1 and COX-2 in basophils and mast cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.