The eye is a complex organ with highly specialized constituent tissues derived from different primordial cell lineages. The retina, for example, develops from neuroectoderm via the optic vesicle, the corneal epithelium is descended from surface ectoderm, while the iris and collagen-rich stroma of the cornea have a neural crest origin. Recent work with pluripotent stem cells in culture has revealed a previously under-appreciated level of intrinsic cellular self-organization, with a focus on the retina and retinal cells. Moreover, we and others have demonstrated the in vitro induction of a corneal epithelial cell phenotype from pluripotent stem cells. These studies, however, have a single, tissue-specific focus and fail to reflect the complexity of whole eye development. Here we demonstrate the generation from human induced pluripotent stem cells of a self-formed ectodermal autonomous multi-zone (SEAM) of ocular cells. In some respects the concentric SEAM mimics whole-eye development because cell location within different zones is indicative of lineage, spanning the ocular surface ectoderm, lens, neuro-retina, and retinal pigment epithelium. It thus represents a promising resource for new and ongoing studies of ocular morphogenesis. The approach also has translational potential and to illustrate this we show that cells isolated from the ocular surface ectodermal zone of the SEAM can be sorted and expanded ex vivo to form a corneal epithelium that recovers function in an experimentally induced animal model of corneal blindness.
(-)-Epigallocatechin gallate (EGCg) is the major component of green tea and is known to show strong biological activity, although it can be easily oxidized under physiological conditions. In this study, we indicate that EGCg is stable in human serum and that human serum albumin (HSA) stabilizes EGCg under aerobic condition. Although EGCg is usually decomposed within 1 h in aqueous solution at neutral pH, EGCg in serum and phosphate buffer (pH 7.4) containing HSA was stable over 1 h, even at neutral and slightly alkaline pH. Under these conditions, EGCg binds to HSA non-covalently. The sulfhydryl group acts as an antioxidant for EGCg oxidation. Incubation of EGCg with HSA is accompanied by the oxidation of a free sulfhydryl group in HSA. These results suggest that the antioxidant property and the binding capacity of HSA contribute to the stabilization of EGCg in human serum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.