Otolith chemistry of juvenile Pacific bluefin tuna Thunnus orientalis was measured to assess differences in composition among 3 nursery areas in the North Pacific Ocean: East China Sea, Sea of Japan and the Pacific Ocean off Shikoku. Six elements (Li, Mg, Ca, Mn, Sr and Ba) were measured in whole otoliths using solution-based inductively coupled plasma mass spectrometry. Univariate contrasts of T. orientalis otoliths collected in 1994 and 1995 indicated that concentrations of 5 elements (Li, Mg, Ca, Mn, Sr) differed among nurseries. Concentrations of Ca and Sr were significantly higher in the Pacific Ocean than in either marginal sea (East China Sea or Sea of Japan) nursery, while concentrations of Li, Mg and Mn were higher in fishes inhabiting marginal seas. Discriminant analysis showed clear separation of elemental fingerprints between Pacific Ocean and marginal sea nurseries, and to a lesser degree separation between the 2 marginal sea groups. Temporal stability of the elemental fingerprint was examined over a 3 yr period (1995 to 1997) in the East China Sea. Significant interannual trends were observed for 3 elements (Mg, Mn and Ba); however, elemental fingerprints of T. orientalis from the Pacific Ocean nursery were markedly different from all yearclasses in the East China Sea.
Effective sustainable management of marine fisheries requires that assessed management units (that is, fish stocks) correspond to biological populations. This issue has long been discussed in the context of Atlantic bluefin tuna (ABFT, Thunnus thynnus) management, which currently considers two unmixed stocks but does not take into account how individuals born in each of the two main spawning grounds (Gulf of Mexico and Mediterranean Sea) mix in feeding aggregations throughout the Atlantic Ocean. Using thousands of genome‐wide molecular markers obtained from larvae and young of the year collected at the species’ main spawning grounds, we provide what is, to the best of our knowledge, the first direct genetic evidence for “natal homing” in ABFT. This has facilitated the development of an accurate, cost‐effective, and non‐invasive tool for tracing the genetic origin of ABFT that allows for the assignment of catches to their population of origin, which is crucial for ensuring that ABFT management is based on biologically meaningful stock units rather than simply on catch location.
Uncertainty regarding the movement and population exchange of Atlantic bluefin tuna (Thunnus thynnus) from the two primary spawning areas (Gulf of Mexico, Mediterranean Sea) is increasingly implicated as a major impediment for the conservation of this species. Here, two mixture methods were applied to natural chemical markers (δ 18 O and δ 13 C) in otoliths (ear stones) to comprehensively investigate the nature and degree of transoceanic movement and mixing of eastern and western populations in several areas of the North Atlantic Ocean that potentially represent mixing hotspots. Areas investigated occurred on both sides of the 45 • W management boundary as well as waters off the coast of Africa (Morocco, Canary Islands) where both populations are known to occur. Projections of population composition (i.e., natal or nursery origin) from a multinomial logistic regression (MLR) classification method with different probability thresholds were generally in agreement with maximum likelihood estimates from the commonly used mixed-population program HISEA; however, predicted contributions for the less abundant population were occasionally higher for MLR estimates. Both MLR and HISEA clearly showed that mixing of Atlantic bluefin tuna in the Central North Atlantic Ocean was highly variable from year to year with expatriates of eastern or western origin commonly crossing into the other management area. Pronounced transoceanic movement and mixing of western migrants was also present off the coast of Africa, with the occurrence of western migrants in the Canary Islands and Morocco ranging from zero to the majority of the individuals assayed for the years examined. Results indicate highly variable rates of movement and population exchange for Atlantic bluefin tuna, highlighting the need for temporally resolved estimates of natal origin in mixing hotspots to improve population models used to evaluate the status of this threatened species.
SUMMARY:
Otolith increments of bluefin tuna Thunnus thynnus were examined to estimate the periodicity of an increment formation and the timing of the first increment formation using larvae and juveniles with known age reared in three laboratories. The increment was formed daily up to 71 days after fertilization. The first increment was formed on the fifth day after fertilization, and around the fourth day after hatching which corresponded to the onset of feeding. Slower growing fish had otoliths with less distinct increments. Since wild captured larvae had otoliths with more distinct increments, fish in the wild either grow faster than that in a laboratory or only faster grown fish survived in the wild.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.