Drug absorption via the intestinal tissue is modulated by membrane permeability and metabolism in intestinal epithelial cells (IECs). In drug discovery research, using human IECs to evaluate membrane permeability and metabolic stability can offer very useful information when exploring for drug candidate compounds that have good bioavailability and when trying to predict the fraction absorbed and intestinal availability in humans. Here, we evaluated the pharmacokinetic functions of human IECs differentiated from human induced pluripotent stem cells (hiPSCs) in 3D cultures. As human IECs differentiated in 3D cultures form intestinal organoids and spheroids (herein termed organoids), their morphology makes it difficult to evaluate their pharmacokinetic functions. Therefore, we dissociated intestinal organoids into single cells and attempted to purify human IECs. We found that hiPSC-derived IECs (hiPSC-IECs) expressed the epithelial cell adhesion molecule (EpCAM) and could be highly purified by sorting EpCAM+ cells. The hiPSC-IEC monolayer showed a high TEER value (approximately 350 Ω × cm 2). In addition, hiPSC-IECs oxidatively metabolized terfenadine (CYP3A and CYP2J2 substrate) and midazolam (CYP3A substrate). These results indicated that hiPSC-IECs form tight-junction and have cytochrome P450 enzymatic activities. In conclusion, we developed a novel application of hiPSCderived intestinal organoids for drug testing.
Coadministration of β-lactam and β-lactamase inhibitor (BLI) is one of the well-established therapeutic measures for bacterial infections caused by β-lactam-resistant Gram-negative bacteria, whereas we have only two options for orally active BLI, clavulanic acid and sulbactam. Furthermore, these BLIs are losing their clinical usefulness because of the spread of new β-lactamases, including extended-spectrum β-lactamases (ESBLs) belonging to class A β-lactamases, class C and D β-lactamases, and carbapenemases, which are hardly or not inhibited by these classical BLIs. From the viewpoints of medical cost and burden of healthcare personnel, oral therapy offers many advantages. In our search for novel diazabicyclooctane (DBO) BLIs possessing a thio-functional group at the C2 position, we discovered a 2-sulfinyl-DBO derivative (2), which restores the antibacterial activities of an orally available third-generation cephalosporin, ceftibuten (CTB), against various serine β-lactamase-producing strains including carbapenem-resistant Enterobacteriaceae (CRE). It can be orally absorbed via the ester prodrug modification and exhibits in vivo efficacy in a combination with CTB.
By the emergence and worldwide spread of multi-drug-resistant Gram-negative bacteria, there have been growing demands for efficacious drugs to cure these resistant infections. The key mechanism for resistance to β-lactam antibiotics is the production of β-lactamases, which hydrolyze and deactivate β-lactams. Diazabicyclooctane (DBO) analogs play an important role as one of the new classes of β-lactamase inhibitors (BLIs), and several compounds such as avibactam (AVI) have been approved by the FDA, along with many derivatives under clinical or preclinical development. Although these compounds have a similar amide substituent at the C2 position, we have recently reported the synthesis of novel DBO analogs which possess a thio functional group. This structural modification enhances the ability to restore the antimicrobial activities of cefixime (CMF) against pathogens producing classes A, C, and D serine β-lactamases compared with AVI and expands the structural tolerance at the six position. Furthermore, some of these analogs showed intrinsic microbial activities based on multipenicillin binding protein (PBP) inhibition. This is the unique feature which has never been observed in DBOs. One of our DBOs had a pharmacokinetic profile comparable to that of other DBOs. These results indicate that the introduction of a thio functional group into DBO is a novel and effective modification to discover a clinically useful new BLI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.