: IDO is expressed more strongly in both primary and secondary glioblastoma tissue than low-grade glioma and may affect clinical outcome. If IDO promotes glioma cells to escape from the immune system, IDO may be a crucial therapeutic target for malignant gliomas.
M alignant glioma is the most common brain tumor in adults; it has an aggressive lethal nature and a median survival of only 14 months, despite the standard established therapy of maximum resection followed by radiation and chemotherapy. Several immunotherapies, such as dendritic cell therapy, have been evaluated as new adjuvant approaches. However, the efficacy of immunotherapy for patients with malignant glioma is limited for several reasons, including the anatomical isolation of the central nervous system by the blood-brain barrier, the absence of a lymphatic drainage system, and the ability of glioma cells to escape recognition by the immune system. Recent studies suggest that indoleamine 2,3-dioxygenase (IDO), the initial rate-limiting enzyme in tryptophan (Trp) metabolism, may be involved in such tumor-induced escape from immunosurveillance, showing an immunosuppressive function.14,27 IDO is expressed in various human cancers such as malignant melanoma, ovarabbreviatioNs FACS = fluorescence-activated cell sorter; GAPDH = glyceraldehyde-3-phosphate dehydrogenase; IDO = indoleamine 2,3-dioxygenase; IDO-KD = IDO-knockdown; INF-g = interferon-g; PBS = phosphate-buffered saline; RT-PCR = real-time polymerase chain reaction; SEM = standard error of the mean; shRNA = short hairpin RNA; TMZ = temozolomide; Treg = regulatory T cell; Trp = tryptophan; 1-MT = 1-methyl-l-tryptophan. Thus, IDO may be a therapeutic target for malignant cancer. The authors have recently shown that IDO expression is markedly increased in human glioblastoma and secondary glioblastoma with malignant change, suggesting that IDO targeting may also have therapeutic potential for patients with glioma. The aim of this study was to investigate the antitumor effect of IDO inhibition and to examine the synergistic function of IDO inhibitor and temozolomide (TMZ) in a murine glioma model. methods Murine glioma GL261 cells and human glioma U87 cells were included in this study. The authors used 3 mouse models to study glioma cell growth: 1) a subcutaneous ectopic model, 2) a syngeneic intracranial orthotopic model, and 3) an allogenic intracranial orthotopic model. IDO inhibition was achieved via knockdown of IDO in GL261 cells using short hairpin RNA (shRNA) and through oral administration of the IDO inhibitor, 1-methyl-l-tryptophan (1-MT). Tumor volume in the subcutaneous model and survival time in the intracranial model were evaluated. results In the subcutaneous model, oral administration of 1-MT significantly suppressed tumor growth, and synergistic antitumor effects of 1-MT and TMZ were observed (p < 0.01). Mice containing intracranially inoculated IDO knockdown cells had a significantly longer survival period as compared with control mice (p < 0.01). coNclusioNs These results suggest that IDO expression is implicated in immunosuppression and tumor progression in glioma cells. Therefore, combining IDO inhibition with standard TMZ treatment could be an encouraging therapeutic strategy for patients with malignant glioma.
The expression of thrombospondin-1 (TSP-1) and its role in gliomas have not been well examined. In the present study TSP-1 expression in a panel of malignant glioma cell lines and the expression of TSP-1 and transforming growth factor (TGF-beta) proteins in low-grade and malignant glioma tissues were investigated. Reverse transcription-polymerase chain reaction analysis showed that nine of nine malignant glioma cell lines expressed TSP-1 mRNA, and seven of nine glioma lines expressed TSP-2 mRNA. Production and secretion of TSP-1 were examined in the T98G glioblastoma cell line by western blot analysis. Total TSP-1 protein content in the supernatant was 10 times higher than that in the cell lysate. Secretion of TSP-1 was examined in these glioma cell lines by western blot analysis. All glioma lines secreted significant levels of TSP-1. Bioassay showed that all tumor lines had the capacity to activate latent TGF-beta. Localization of TSP-1, TGF-beta1, -beta2, and -beta3 was examined immunohistochemically in surgically resected glioma tissues, including 11 glioblastomas, six anaplastic astrocytomas, and eight astrocytomas. Most glioblastomas expressed high levels of both TSP-1 and TGF-beta. Anaplastic astrocytomas expressed moderate levels of TSP-1 and TGF-beta. Most malignant gliomas expressed various levels of TGF-beta1, -beta2, and -beta3. The expression of both proteins, however, was weak in low-grade gliomas. Normal brain tissues around the tumors were negatively or very weakly positively stained for TSP-1 and TGF-beta. These results indicate that most malignant glioma cells express TSP-1 in vitro and in vivo, and the expression of TSP-1 and TGF-beta in vivo correlates with the histologic malignancy of glioma. Overexpression of both TSP-1 and TGF-beta may increase the biologic malignancy of malignant gliomas, through generating the active form of TGF-beta in tumor tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.