Metastatic renal cell carcinoma (RCC) is a tumor entity with poor prognosis due to limited therapy options. Tyrosine kinase inhibitors (TKI) represent the standard of care for RCCs, however a significant proportion of RCC patients develop resistance to this therapy. Interleukin-6 (IL-6) is considered to be associated with poor prognosis in RCCs. We therefore hypothesized that TKI resistance and IL-6 secretion are causally connected. We first analyzed IL-6 expression after TKI treatment in RCC cells and RCC tumor specimens. Cell proliferation and signal transduction activity were then quantified after co-treatment with tocilizumab, an IL-6R inhibitor, in vitro and in vivo. 786-O RCC cells secrete high IL-6 levels after low dose stimulation with the TKIs sorafenib, sunitinib and pazopanib, inducing activation of AKT-mTOR pathway, NFκB, HIF-2α and VEGF expression. Tocilizumab neutralizes the AKT-mTOR pathway activation and results in reduced proliferation. Using a mouse xenograft model we can show that a combination therapy with tocilizumab and low dosage of sorafenib suppresses 786-O tumor growth, reduces AKT-mTOR pathway and inhibits angiogenesis in vivo more efficient than sorafenib alone. Furthermore FDG-PET imaging detected early decrease of maximum standardized uptake values prior to extended central necrosis.Our findings suggest that a combination therapy of IL-6R inhibitors and TKIs may represent a novel therapeutic approach for RCC treatment.
Metastatic renal cell carcinoma (mRCC) is a tumor entity with poor prognosis due to limited therapy options. Tyrosine kinase inhibitors (TKIs), the novel targeted agents have been used for the treatment of mRCC and have shown efficacy. Interferon (IFN)-α is also one of the most frequently used agents in immunotherapy. However, drug resistance needs to be overcome to achieve a sufficiently positive effect. Interleukin-6 (IL-6), which induce suppressor of cytokine signaling-3 (SOCS3) expression, is one of the factors associated with poor prognosis of patients with renal cell carcinoma (RCC). To analyze the influence of IL-6 in drug resistance of RCC, anti-IL-6 receptor antibody was used in combination with IFN or TKIs. The SOCS3 mRNA expression level was significantly increased by IFNα stimulation in 786-O RCC cells which were resistant to IFN, but not in ACHN cells that were sensitive to IFN. The overexpression of SOCS3 by gene transfection in ACHN significantly inhibited the growthinhibitory effect of IFNα. An in vivo study demonstrated that coadministration of SOCS3-targeted siRNA promoted INFαinduced cell death and growth suppression in 786-O cell xenograft. SOCS3 could be a key component in the resistance to interferon treatment of renal cell carcinoma. Because SOCS3 is rapidly upregulated by IL-6 and a negative regulator of cytokine signaling, IL-6 expression on RCC cells was also analyzed and the 786-O cells showed the high level of IL-6 mRNA expression under the condition of interferon stimulation. IL-6R antibody, tocilizumab, significantly suppressed cell proliferation in 786-O cells by interferon stimulation accompanied with phosphorylation of STAT1 and inhibited SOCS3 expression. The in vivo effects of combination therapy with tocilizumab and interferon showed significant suppression of 786-O tumor growth in a xenograft model. We also hypothesized that TKI resistance and IL-6 secretion are causally connected. And we found that 786-O RCC cells secrete high IL-6 levels after low dose stimulation with the TKIs sorafenib, sunitinib and pazopanib, inducing activation of AKT-mTOR pathway, NFκB, HIF-2α and VEGF expression. Tocilizumab neutralizes the AKT-mTOR pathway activation and results in reduced proliferation. A combination therapy with tocilizumab and TKI suppresses 786-O tumor growth and inhibits angiogenesis in vivo more efficient than TKI alone. Our findings suggest that IL-6 could induce drug resistance on RCC, and combination therapy of IL-6R inhibitors and IFN/TKIs may represent a novel therapeutic approach for RCC treatment.
In response to various cellular stresses, p53 exerts its tumor suppressive effects such as apoptosis, cell cycle arrest, and senescence through the induction of its target genes. Recently, p53 was shown to control cellular homeostasis by regulating energy metabolism, glycolysis, antioxidant effect, and autophagy. However, its function in inositol synthesis was not reported. Through a microarray screening, we found that five genes related with myo-inositol metabolism were induced by p53. DNA damage enhanced intracellular myo-inositol content in HCT116 p53+/+ cells, but not in HCT116 p53-/- cells. We also indicated that inositol 3-phosphate synthase (ISYNA1) which encodes an enzyme essential for myo-inositol biosynthesis as a direct target of p53. Activated p53 regulated ISYNA1 expression through p53 response element in the seventh exon. Ectopic ISYNA1 expression increased myo-inositol levels in the cells and suppressed tumor cell growth. Knockdown of ISYNA1 caused resistance to adriamycin treatment, demonstrating the role of ISYNA1 in p53-mediated growth suppression. Furthermore, ISYNA1 expression was significantly associated with p53 mutation in bladder, breast cancer, head and neck squamous cell carcinoma, lung squamous cell carcinoma, and pancreatic adenocarcinoma. Our findings revealed a novel role of p53 in myo-inositol biosynthesis which could be a potential therapeutic target.
The NS procedure in RARP has the possibility to improve not only erectile function, but also LUTS, owing to both the increase of MVV and the decrease of nocturia. Therefore, the NS procedure is also recommended from the viewpoint of early improvement of LUTS and lower urinary tract dysfunction after RARP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.