We report the first study of sperm whale-fall ecosystems, based on mass sinking of whale carcasses at shelf depths in the northwest Pacific. We conducted three observations over a 2-year period on replicate sperm-whale carcasses implanted at depths of 219-254 m off the southern part of Japan from July 2003 to August 2005. The study was made possible by a mass stranding of sperm whales in January 2002, and the subsequent sinking of 12 carcasses in the waters off Cape Nomamisaki. Dense aggregations of unique chemosynthesis-based fauna had formed around the whale carcasses after 18 months (July 2003). The mytilid mussel Adipicola pacifica was the most abundant macrofaunal species and covered most of the exposed bone surfaces. The general composition of the fauna was similar to that of deep-water reducing habitats, but none of the species appearing in this study has been found at hydrothermal vents, cold seeps or deep-water whale falls. A new species of lancelet, which was the first record of the subphylum Cephalochordata from reducing environments, a new species of Osedax; a rarely encountered benthic ctenophore, and a rare gastropod species were discovered at this sperm whale-fall site. Benthic communities were similar across all the carcasses studied, although the body sizes of the whales were very different. The succession of epifaunal communities was relatively rapid and the sulphophilic stage was considerably shorter than that of other known whale falls.
One of the systematically controversial superfamilies in Caridea is the predominately deep-sea or cold water Pandaloidea, largely because this species-rich group of nearly 200 species in 25 genera exhibits a very high diversity of body forms and ecology. Although the relationships amongst the taxa within Pandaloidea have been repeatedly discussed based on morphology, no comprehensive molecular phylogeny exists. In this study, we present the first molecular phylogeny of the group, based on a combined dataset of two mitochondrial (12S and 16S rRNA) and six nuclear (ATP synthase β-subunit, enolase, glyceraldehyde-3-phosphate dehydrogenase, histone 3, phosphoenolpyruvate carboxykinase and sodium-potassium ATPase α-subunit) markers, based on 62 species (about 1/3 of known biodiversity) in 22 genera (88% of genera) of two pandaloid families (Pandalidae, Thalassocarididae) and outgroups from seven other caridean families. With generally high support, the relationships within the clade are fully resolved. Pandalidae is shown to be paraphyletic with Thalassocarididae deeply nested within as a monophyletic group, and the latter is herein considered to be a synonym of Pandalidae. Five major clades are recovered, with the shallow water genera Anachlorocurtis, Chlorocurtis, Chlorotocella and Miropandalus forming a sister clade to the remaining genera. At the genus level, the phylogeny indicates Plesionika, Heterocarpus and Pandalus to be not monophyletic. The validity of Pandalopsis, Stylopandalus and Calipandalus is challenged and these genera are considered herein to be junior synonyms of Pandalus (Pandalopsis) and Plesionika (Stylopandalus and Calipandalus). Although not fully resolved, some evidence potentially considers Nothocaris to be a valid genus. Ancestral State Reconstruction successfully recovered 15 synapomorphies for the major clades, with 11 of them reported to be of systematic significance for the first time.
The Decapoda is one of the largest orders within the class Malacostraca, comprising approximately 14,000 extant species and including many commercially important species. For biodiversity monitoring in a non-invasive manner, a new set of PCR primers was developed for metabarcoding environmental DNA (eDNA) from decapod crustaceans. The new primers (herein named “MiDeca”) were designed for two conservative regions of the mitochondrial 16S rRNA gene, which amplify a short, hyper-variable region (153–184 bp, 164 bp on average) with sufficient interspecific variations. With the use of MiDeca primers and tissue-derived DNA extracts, we successfully determined those sequences (154–189 bp) from 250 species, placed in 186 genera and 65 families across the suborder Dendrobranchiata and 10 of the 11 infraorders of the suborder Pleocyemata. We also preliminarily attempted eDNA metabarcoding from natural seawater collected at Banda, Tateyama, the Pacific coast of central Japan and detected 42 decapod species including 34 and 8 species with sequence identities of > 98% and 80–98%, respectively. The results suggest the usefulness of eDNA metabarcoding with MiDeca primers for biodiversity monitoring of the decapod species. It appears, however, that further optimisation of primer sequences would still be necessary to avoid possible PCR dropouts from eDNA extracts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.