A recently discovered satiety molecule, nesfatin-1, is localized in neurons of the hypothalamus and brain stem and colocalized with stress-related substances, corticotropin-releasing hormone (CRH), oxytocin, proopiomelanocortin, noradrenaline (NA) and 5-hydroxytryptamine (5-HT). Intracerebroventricular (icv) administration of nesfatin-1 produces fear-related behaviors and potentiates stressor-induced increases in plasma adrenocorticotropic hormone (ACTH) and corticosterone levels in rats. These findings suggest a link between nesfatin-1 and stress. In the present study, we aimed to further clarify the neuronal network by which nesfatin-1 could induce stress responses in rats. Restraint stress induced c-Fos expressions in nesfatin-1-immunoreactive neurons in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) of the hypothalamus, and in the nucleus of solitary tract (NTS), locus coeruleus (LC) and dorsal raphe nucleus (DR) in the brain stem, without altering plasma nesfatin-1 levels. Icv nesfatin-1 induced c-Fos expressions in the PVN, SON, NTS, LC, DR and median raphe nucleus, including PVN-CRH, NTS-NA, LC-NA and DR-5-HT neurons. Nesfatin-1 increased cytosolic Ca2+ concentration in the CRH-immunoreactive neurons isolated from PVN. Icv nesfatin-1 increased plasma ACTH and corticosterone levels. These results indicate that the central nesfatin-1 system is stimulated by stress and activates CRH, NA and 5-HT neurons and hypothalamic-pituitary-adrenal axis, evoking both central and peripheral stress responses.
OBJECTIVEGhrelin reportedly restricts insulin release in islet β-cells via the Gαi2 subtype of G-proteins and thereby regulates glucose homeostasis. This study explored whether ghrelin regulates cAMP signaling and whether this regulation induces insulinostatic cascade in islet β-cells.RESEARCH DESIGN AND METHODSInsulin release was measured in rat perfused pancreas and isolated islets and cAMP production in isolated islets. Cytosolic cAMP concentrations ([cAMP]i) were monitored in mouse MIN6 cells using evanescent-wave fluorescence imaging. In rat single β-cells, cytosolic protein kinase-A activity ([PKA]i) and Ca2+ concentration ([Ca2+]i) were measured by DR-II and fura-2 microfluorometry, respectively, and whole cell currents by patch-clamp technique.RESULTSGhrelin suppressed glucose (8.3 mmol/L)-induced insulin release in rat perfused pancreas and isolated islets, and these effects of ghrelin were blunted in the presence of cAMP analogs or adenylate cyclase inhibitor. Glucose-induced cAMP production in isolated islets was attenuated by ghrelin and enhanced by ghrelin receptor antagonist and anti-ghrelin antiserum, which counteract endogenous islet-derived ghrelin. Ghrelin inhibited the glucose-induced [cAMP]i elevation and [PKA]i activation in MIN6 and rat β-cells, respectively. Furthermore, ghrelin potentiated voltage-dependent K+ (Kv) channel currents without altering Ca2+ channel currents and attenuated glucose-induced [Ca2+]i increases in rat β-cells in a PKA-dependent manner.CONCLUSIONSGhrelin directly interacts with islet β-cells to attenuate glucose-induced cAMP production and PKA activation, which lead to activation of Kv channels and suppression of glucose-induced [Ca2+]i increase and insulin release.
Gastric hormone ghrelin regulates insulin secretion, as well as growth hormone release, feeding behavior and adiposity. Ghrelin is known to exert its biological actions by interacting with the growth hormone secretagogue-receptor (GHSR) coupled to Gq/11-protein signaling. By contrast, ghrelin acts on pancreatic islet β-cells via Gi-protein-mediated signaling. These observations raise a question whether the ghrelin action on islet β-cells involves atypical GHSR and/or distinct signal transduction. Furthermore, the role of the β-cell GHSR in the systemic glycemic effect of ghrelin still remains to be defined. To address these issues, the present study employed the global GHSR-null mice and those re-expressing GHSR selectively in β-cells. We here report that ghrelin attenuates glucose-induced insulin release via direct interaction with ordinary GHSR that is uniquely coupled to novel cAMP/TRPM2 signaling in β-cells, and that this β-cell GHSR with unique insulinostatic signaling largely accounts for the systemic effects of ghrelin on circulating glucose and insulin levels. The novel β-cell specific GHSR-cAMP/TRPM2 signaling provides a potential therapeutic target for the treatment of type 2 diabetes.
Insulin secretion from pancreatic islet β-cells is stimulated by glucose. Glucose-induced insulin release is potentiated or suppressed by hormones and neural substances. Ghrelin, an acylated 28-amino acid peptide, was isolated from the stomach in 1999 as the endogenous ligand for the growth hormone (GH) secretagogue-receptor (GHS-R). Circulating ghrelin is produced predominantly in the stomach and to a lesser extent in the intestine, pancreas and brain. Ghrelin, initially identified as a potent stimulator of GH release and feeding, has been shown to suppress glucose-induced insulin release. This insulinostatic action is mediated by Gα i2 subtype of GTP-binding proteins and delayed outward K + (Kv) channels. Interestingly, ghrelin is produced in pancreatic islets. The ghrelin originating from islets restricts insulin release and thereby upwardly regulates the systemic glucose level. Furthermore, blockade or elimination of ghrelin enhances insulin release, which can ameliorate glucose intolerance in high-fat diet fed mice and ob/ob mice. This review focuses on the insulinostatic action of ghrelin, its signal transduction mechanisms in islet β-cells, ghrelin's status as an islet hormone, physiological roles of ghrelin in regulating systemic insulin levels and glycaemia, and therapeutic potential of the ghrelin-GHS-R system as the target to treat type 2 diabetes.
Edited by Laszlo NagyKeywords: Ghrelin GLP-1 Insulin release Cytosolic Ca 2+ cAMP Islet b-cell a b s t r a c tWe studied interactive effects of insulinotropic GLP-1 and insulinostatic ghrelin on rat pancreatic islets. GLP-1 potentiated glucose-induced insulin release and cAMP production in isolated islets and [Ca 2+ ] i increases in single b-cells, and these potentiations were attenuated by ghrelin. Ghrelin suppressed [Ca 2+ ] i responses to an adenylate cyclase activator forskolin. Moreover, GLP-1-induced insulin release and cAMP production were markedly enhanced by [D-lys 3 ]-GHRP-6, a ghrelin receptor antagonist, in isolated islets. These results indicate that both exogenous and endogenous isletderived ghrelin counteracts glucose-dependent GLP-1 action to increase cAMP production, [Ca 2+ ] i and insulin release in islet b-cells, positioning ghrelin as a modulator of insulinotropic GLP-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.