Appearance of a color stimulus is significantly affected by the contrast between its luminance and the luminance of the background. In the present study, we used stimuli evenly distributed on the CIE-xy chromaticity diagram to examine how luminance contrast affects neural representation of color in V4 and the anterior inferior temporal (AITC) and posterior inferior temporal (PITC) color areas (Banno et al., 2011). The activities of single neurons were recorded from monkeys performing a visual fixation task, and the effects of luminance contrast on the color selectivity of individual neurons and their population responses were systematically examined by comparing responses to color stimuli that were brighter or darker than the background. We found that the effects of luminance contrast differed considerably across V4 and the PITC and AITC. In both V4 and the PITC, the effects of luminance contrast on the population responses of color-selective neurons depended on color. In V4, the size of the effect was largest for blue and cyan, whereas in the PITC, the effect gradually increased as the saturation of the color stimulus was reduced, and was especially large with neutral colors (white, gray, black). The pattern observed in the PITC resembles the effect of luminance contrast on color appearance, suggesting PITC neurons are closely involved in the formation of the perceived appearance of color. By contrast, the color selectivities of AITC neurons were little affected by luminance contrast, indicating that hue and saturation of color stimuli are represented independently of luminance contrast in the AITC.
Chromatic selectivity has been studied extensively in various visual areas at different stages of visual processing in the macaque brain. In these studies, color stimuli defined in the Derrington-Krauskopf-Lennie (DKL) color space with a limited range of cone contrast were typically used in early stages, whereas those defined in the Commission Internationale de l'Eclairage (CIE) color space, based on human psychophysical measurements across the gamut of the display, were often used in higher visual areas. To understand how the color information is processed along the visual pathway, it is necessary to compare color selectivity obtained in different areas on a common color space. In the present study, we tested whether the neural color selectivity obtained in DKL space can be predicted from responses obtained in CIE space and whether stimuli with limited cone contrast are sufficient to characterize neural color selectivity. We found that for most V4 neurons, there was a strong correlation between responses measured using the two chromatic coordinate systems, and the color selectivities obtained with the two stimulus sets were comparable. However, for some neurons preferring high- or low-saturation colors, stimuli defined in DKL color space did not adequately capture the neural color selectivity. This is mainly due to the use of stimuli within a limited range of cone contrast. We conclude that regardless of the choice of color space, the sampling of colors across the entire gamut is important to characterize neural color selectivity fully or to compare color selectivities in different areas so as to understand color representation in the visual system.
Object segmentation-the process of parsing visual scenes-is essential for object recognition and scene understanding. We investigated how responses of neurons in macaque inferior temporal (IT) cortex contribute to object segmentation under partial occlusion. Specifically, we asked whether IT responses to occluding and occluded objects are bound together as in the visual image or linearly separable reflecting their segmentation. We recorded the activity of 121 IT neurons while two male animals performed a shape discrimination task under partial occlusion. We found that for a majority (60%) of neurons, responses were enhanced by partial occlusion, but they were only weakly shape selective for the discriminanda at all levels of occlusion. Enhancement of IT responses in these neurons depended largely on the area of occlusion but only minimally on the color and shape of the occluding dots. In contrast to the above group of neurons, a sizable minority responded best to the unoccluded stimulus and showed strong selectivity for the shape of the discriminanda. In these neurons, response magnitude and shape selectivity declined with increasing levels of occlusion. Simulations revealed that the response characteristics of both classes of neurons were consistent with a model in which the responses to the occluded shape and the occluders are weighted separately and linearly combined. Overall, our results support the hypothesis that information about occluded and occluding stimuli are linearly separable and easily decodable from IT responses and that IT neurons encode a segmented representation of the visual scene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.