Visualization and quantitative evaluation of covalent bond scission in polymeric materials are highly important for understanding failure, fatigue, and deterioration mechanisms and improving the lifetime, durability, toughness, and reliability of the materials. The diarylbibenzofuranone-based mechanophore radical system enabled, through electron paramagnetic resonance spectroscopy, in situ quantitative evaluation of scission of the mechanophores and estimation of mechanical energy induced along polymer chains by external forces. The coagulation of polymer solutions by freezing probably generated force but did not cleave the mechanophores. On the other hand, cross-linking led to efficient propagation of the force of more than 80 kJ mol(-1) to some mechanophores, resulting their cleavage and generation of colored stable radicals. This mechanoprobe concept has the potential to elucidate other debated issues in the polymer field as well.
Stress evaluation in polymeric materials
is important in order
to not only spot danger in them before serious failure, but also precisely
interpret the destructive mechanism, which can improve the lifetime
and durability of polymeric materials. Here, we are able to visualize
stress by color changes, as well as quantitatively estimate the stress
in situ, in segmented polyurethane elastomers with diarylbibenzofuranone-based
dynamic covalent mechanophores. We prepared films of the segmented
polyurethanes, in which the mechanophores were incorporated in the
soft segments, and efficiently activated them by mechanical force.
Cleavage of the mechanophores during uniaxial elongation and their
recovery after the removal of the stress were quantitatively evaluated
by in situ electron paramagnetic resonance measurements, accompanied
by drastic color changes.
Mechanoresponsive polymers can have attractive functions; however, the relationship between polymer architecture and mechanoresponsiveness in the bulk state is still poorly understood. Here, we designed well-defined linear and star polymers with a mechanophore at the center of each architecture, and investigated the effect of molecular weight and branched structures on mechanoresponsiveness in the solid state. Diarylbibenzofuranone, which can undergo homolytic cleavage of the central C−C bond by mechanical force to form blue-colored radicals, was used as a mechanophore because the cleaved radicals could be evaluated quantitatively using electron paramagnetic resonance measurements. We confirmed that longer polymer chains induce mechanochemical activation more effectively and found that, in the bulk state, the star polymers have higher sensitivity to mechanical stress compared with a linear polymer having similar molecular weight arm segment.
Reversible bonds and interactions have been utilized to build stimuli-responsive and reorganizable polymer networks that show recyclability, plasticity, and self-healing. In addition, reorganization of polymer gels at ambient temperature, such as room or body temperature, is expected to lead to several biomedical applications. Although these stimuli-responsive properties originate from the reorganization of the polymer networks, not such microscopic structural changes but instead only macroscopic properties have been the focus of previous work. In the present work, the reorganization of gel networks with diarylbibenzofuranone (DABBF)-based dynamic covalent linkages in response to the ambient temperature was systematically investigated from the perspective of both macroscopic and microscopic changes. The gels continued to swell in suitable solvents above room temperature but attained equilibrium swelling in nonsolvents or below room temperature because of the equilibrium of DABBF linkages, as supported by electron paramagnetic resonance measurements. Small-angle X-ray scattering measurements revealed the mesh sizes of the gels to be expanded and the network structures reorganized under control at ambient temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.