The melanoma differentiation-associated gene-7 (mda-7), cloned from a human melanoma cell line H0-1, is known to induce tumor cell-selective growth inhibition in breast cancer cells in vitro and loss of tumorigenicity ex vivo. Yet, the mechanisms underlying these effects are still unknown. Therefore, we investigated these mechanisms on the molecular level in human non-small cell lung carcinoma (NSCLC) cells in vitro. Overexpression of mda-7 protein by Ad-mda-7 significantly suppressed proliferation and induced G2/M cell cycle arrest in wild-type p53 (A549, H460), and p53-null (H1299) non-small cell lung cancer cell lines, but not in normal human lung fibroblast (NHLF) cells. p53, Bax,
The potent and selective killing activity of Ad-mda7 in cancer cells but not in normal cells makes this vector a potential candidate for cancer gene therapy.
Overexpression of the melanoma di erentiation associated gene-7 (mda-7) in vitro results in suppression of lung cancer cell proliferation. However, the ability of MDA-7 to suppress lung cancer in vivo has not been previously demonstrated. In this study, we investigated the possibility of inducing overexpression of the mda-7 gene in human non-small cell lung carcinoma cells in vivo and its e ects on tumor growth. Adenovirus-mediated overexpression of MDA-7 in p53-wild-type A549 and p53-null H1299 subcutaneous tumors resulted in signi®cant tumor growth inhibition through induction of apoptosis. In addition, decreased CD31/PECAM expression and upregulation of APO2/TRAIL were observed in tumors expressing MDA-7. In vivo studies correlated well with in vitro inhibition of lung tumor cell proliferation and endothelial cell di erentiation mediated by Ad-mda7. These data demonstrate that Ad-mda7 functions as a multi-modality anti-cancer agent, possessing both, pro-apoptotic and anti-angiogenic properties. We demonstrate for the ®rst time the potential therapeutic e ects of Ad-mda7 in human lung cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.