Despite the rapid progress in C−C bond-forming reactions using Katritzky salts, their deaminative allylation remains a challenge. Inspired by the metallaphotoredox-catalyzed allylic substitution regime, here, we report the deaminative allylation of Katritzky salts via cobalt/organophotoredox dual catalysis. This cross-electrophile coupling enables regioselective allylation using a variety of allylic esters, overcoming the substrate limitations of reported protocols. Mechanistic studies indicate the involvement of a π-allyl cobalt complex as a radicalophile that mediates C−C bond formation.
Despite their unique potential as rare 1,1-dipole synthons, allyl sulfones are rarely used in target-oriented syntheses, likely due to the lack of a general catalytic method for their branch-selective allylic substitution. Herein, we identified allyl 4-chlorophenyl sulfone as a versatile linchpin for both base-mediated α-derivatization and subsequent cobalt-catalyzed allylic substitution. The sequential transformations allow for highly regioselective access to branched allylic substitution products with a variety of aliphatic side chains. The photoredox-enabled cobalt catalysis is indispensable for achieving high yields and regioselectivity for the desulfonylative substitution in contrast to traditional metal-catalyzed protocols, which lead to inferior outcomes in the corresponding transformations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.