Nanostructures can be used for the fabrication of highly functional materials transporting ions and charges. We demonstrate a new design strategy for polymeric higher ion-conductors. Phase-segregated layers of alternating mobile tetra(ethylene oxide)s (TEOs) and rigid aromatic cores where the TEO moieties are grafted from aromatic layers have been shown to be efficient to transport lithium triflate. Such segregated structures at the nanometer scale (nano-segregated structures) were prepared by in-situ photopolymerization of an aligned methacrylate liquid crystalline monomer comprising a terphenyl rigid rod mesogen having a TEO terminal chain. The ion-conductive TEO moiety remains in the highly mobile state even after polymerization, which is indicated by its low glass transition temperature (-45 degrees C). This nanostructured film exhibits an ionic conductivity parallel to the layer of 10(-3) S cm(-1) at room temperature. The highest ionic conductivity is in the level of 10(-2) S cm(-1) observed at 150 degrees C. The anisotropic ionic conductivities have been observed for the nano-segregated film.
Optimization of experimental conditions for spectroelectrochemistry with an optically transparent thin-layer electrode allowed us to determine the redox potential of spinach P700, the primary electron donor of photosystem I, to be +469 mV vs. SHE with significantly high reproducibility (±2 mV for 12 independent samples).
The redox potentials of P700, the primary electron donor of photosystem (PS) I, of spinach and Thermosynechococcus elongatus were determined by means of spectroelectrochemistry with an error range of ±2-3 mV, to find that the redox potential of P700 in T. elongatus is lower by ca. 50 mV as compared with spinach. The shift in the P700 redox potential of PS I core particles prepared by harsh detergent treatments remained to within 10 mV for both organisms. These results show that the 50 mV difference in the P700 redox potential between the two organisms is not a detergent-induced artifact but reflects an intrinsic property of each PS I.
The redox potential of the primary electron donor P700, E(m)(P700/P700(+)), of Photosystem I (PSI) has been determined for 10 oxygenic photosynthesis organisms, ranging from cyanobacteria, red algae, green algae to higher plants, by spectroelectrochemistry with an optically transparent thin-layer electrode (OTTLE) cell to elucidate the scattering by as much as 150 mV in reported values of E(m)(P700/P700(+)). The E(m)(P700/P700(+)) values determined within error ranges of ± 1-4 mV exhibited a significant species dependence, with a span >70 mV, from +398 to +470 mV vs. the standard hydrogen electrode (SHE). The E(m)(P700/P700(+)) value appears to change systematically in going from cyanobacteria and primitive eukaryotic red algae, then to green algae and higher plants. From an evolutionary point of view, this result suggests that the species believed to appear later in evolution of photosynthetic organisms exhibit higher values of E(m)(P700/P700(+)). Further, the species dependence of E(m)(P700/P700(+)) seems to originate in the species-dependent redox potentials of soluble metalloproteins, Cyt c(6) and plastocyanin, which re-reduce the oxidized P700 in the electron transfer chain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.