Bem1 is a scaffold protein essential for the establishment of cell polarity in Saccharomyces cerevisiae. This work reports the solution structure of a Cdc42 binding module of Bem1 comprising the second SH3 domain (SH3b) and its C-terminal flanking region termed Cdc42 interacting (CI). First, the structure of Bem1 SH3b-CI was determined by NMR spectroscopy, which shows that Bem1 SH3b-CI is a structurally and functionally related domain that binds Cdc42. Next, the solution structure of Bem1 SH3b-CI in complex with the proline-rich region of p21-activated kinase Ste20 (Ste20 PRR) was determined. Finally, the interaction surface of Bem1 SH3b-CI with Cdc42 was identified based on chemical shift perturbation studies which reveals that Bem1 SH3b-CI interacts simultaneously with both Ste20 PRR and Cdc42 using the opposite surfaces. Thus, Bem1 can tether Cdc42 and Ste20 in close proximity so that Cdc42 can efficiently interact with Ste20 Cdc42 and Rac interactive binding (CRIB). Based on the present results together with the previous biochemical studies (Lamson, R. E., Winters, M.
This paper describes an odorant sensor based on mosquito olfactory receptors (ORs) that is sensitive to the volatile organic compound octenol. The ORs and OR coreceptors were reconstructed in the lipid bilayer membrane in a chamber device equipped with electrodes. Using this odorant sensor, we obtained ion current changes caused by specific OR responses to octenol. We installed the odorant sensor into a mobile robot and succeeded in the demonstration of coupling octenol gas detection and robot actuation. We believe that this biohybrid odorant sensing system will be a key technology for future artificial olfaction.
A quantitative structure-activity relationship (QSAR) model of the fetal-maternal blood concentration ratio (F/M ratio) of chemicals was developed to predict the placental transfer in humans. Data on F/M ratio of 55 compounds found in the literature were separated into training (75%, 41 compounds) and testing sets (25%, 14 compounds). The training sets were then subjected to multiple linear regression analysis using the descriptors of molecular weight (MW), topological polar surface area (TopoPSA), and maximum E-state of hydrogen atom (Hmax). Multiple linear regression analysis and a cross-validation showed a relatively high adjusted coefficient of determination (R a 2 ) (0.73) and cross-validated coefficient of determination (Q 2 ) (0.71), after removing three outliers. In the external validation, R 2 for external validation (R 2 pred ) was calculated to be 0.51. These results suggested that the QSAR model developed in this study can be considered reliable in terms of its robustness and predictive performance. Since it is difficult to examine the F/M ratio in humans experimentally, this QSAR model for prediction of the placental transfer of chemicals in humans could be useful in risk assessment of chemicals in humans.Key words placental transfer; human; quantitative structure-activity relationship; fetal-maternal blood concentration ratioThe placental transfer of chemicals is crucial for toxicity assessment of fetus, because chemicals that do not penetrate the placenta are considered safe for fetus.1) Therefore, investigations of many drugs that are transferred from mother to fetus through the placenta have been performed.Since it is difficult to measure the placental transfer of chemicals in humans ethically, in vitro and ex vivo methods have been developed and used for the evaluation of human placental transfer.2) In in vitro methods, cell lines from human placenta, such as BeWo, JAr, and JEG cells, have been commonly used as models of the placental barrier.3) In ex vivo methods, the human placenta is perfused to investigate the transfer of chemicals from maternal to fetal compartment. Although this system has been validated in many studies, and therefore this system is considered reliable, there are difficulties in conducting this evaluation method. 2,4)Quantitative structure-activity relationship (QSAR) models are useful tools for predicting the biological activity of chemicals. Descriptors of chemicals such as molecular weight and log P, are needed to develop QSAR prediction, and those are determined by experiments, calculation, or predicted using software. In the field of pharmacokinetics, QSAR models have been developed and reported in areas such as oral bioavailability, Caco-2 permeability, and metabolism. 5-7)QSAR models for predicting the placental transfer of chemicals using ex vivo data have already been reported. 8,9) However, to our knowledge, this is the first report that indicates prediction of the fetal-maternal blood concentration ratio (F/M ratio) of chemicals using in vivo data. To predict t...
To estimate the metabolic profile of trans-permethrin in humans, a comparison of the in vitro metabolism of trans-permethrin in humans and rats was conducted using hepatic microsomes, and cytochrome P450 and UDP-glucuronyltransferase isoforms, which catalyze the metabolism of 3-phenoxybenzyl alcohol (PBalc) and 3-phenoxybenzoic acid (PBacid), respectively. In humans and rats, the major metabolic reaction of trans-permethrin in microsomal incubations was the cleavage of ester linkage to give PBalc, followed by oxidation to 4'-OH-PBalc, 4'-OH-PBacid, and PBacid. As to 4'-hydroxylation of PBalc, several CYPs were able to catalyze the reaction, and CYP2E1 was identified as a predominant isoform. PBacid and its conjugates (glucuronide and glycine) are major urinary metabolites of trans-permethrin in mammals. PBacid is also a metabolite of several pyrethroids, and has been used as a biomarker of human exposure to pyrethroids. Our study indicated that there was no difference in glucuronyltransferase activity of PBacid between humans and rats, and that only UGT1A9 can catalyze the glucuronidation of PBacid among human UGTs. Some UGT1A9 variants are known to have poor glucuronidation activity. From these results, it was assumed that deficiency or polymorphism of UGT1A9 might affect the profile of PBacid and its conjugates in urine collected from persons exposed to trans-permethrin or other pyrethroids. These results are helpful for understanding the metabolism of trans-permethrin in humans and determining methods for quantification of target analytes for assessment of human exposure to trans-permethrin and other pyrethroids that give PBacid and its conjugates as urinary metabolites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.