Stomatin, a 288-residue protein, is a component of the membrane skeleton of red blood cells (RBCs), which helps to physically support the membrane and maintains its function. In RBCs, stomatin binds to the glucose transporter GLUT-1 and may regulate its function. Stomatin has a stomatin/prohibitin/flotillin/HflK (SPFH) domain at the center of its polypeptide chain. There are 12 SPFH domain-containing proteins, most of which are localized at the cellular or subcellular membranes. Although the molecular function of the SPFH domain has not yet been established, the domain may be involved in protein oligomerization. The SPFH domain of the archaeal stomatin homolog has been shown to form unique oligomers. Here we report the (15)N, (13)C, and (1)H chemical shift assignments of the SPFH domain of human stomatin [hSTOM(SPFH)]. These may help in determining the structure of hSTOM(SPFH) in solution as well as in clarifying its involvement in protein oligomerization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.