Background The revolution in molecular biology has shown how protein function and structure are based on specific sequences of amino acids. Thus, an important feature in many papers is the mention of the significance of individual amino acids in the context of the entire sequence of the protein. MutationFinder is a widely used program for finding mentions of specific mutations in texts. We report on augmenting the positive attributes of MutationFinder with a more inclusive regular expression list to create ResidueFinder, which finds mentions of native amino acids as well as mutations. We also consider parameter options for both ResidueFinder and MutationFinder to explore trade-offs between precision, recall, and computational efficiency. We test our methods and software in full text as well as abstracts. Results We find there is much more variety of formats for mentioning residues in the entire text of papers than in abstracts alone. Failure to take these multiple formats into account results in many false negatives in the program. Since MutationFinder, like several other programs, was primarily tested on abstracts, we found it necessary to build an expanded regular expression list to achieve acceptable recall in full text searches. We also discovered a number of artifacts arising from PDF to text conversion, which we wrote elements in the regular expression library to address. Taking into account those factors resulted in high recall on randomly selected primary research articles. We also developed a streamlined regular expression (called “cut”) which enables a several hundredfold speedup in both MutationFinder and ResidueFinder with only a modest compromise of recall. All regular expressions were tested using expanded F-measure statistics, i.e., we compute Fβ for various values of where the larger the value of β the more recall is weighted, the smaller the value of β the more precision is weighted. Conclusions ResidueFinder is a simple, effective, and efficient program for finding individual residue mentions in primary literature starting with text files, implemented in Python, and available in SourceForge.net. The most computationally efficient versions of ResidueFinder could enable creation and maintenance of a database of residue mentions encompassing all articles in PubMed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.