Over the past decade, vision-based vehicle detection techniques for road safety improvement have gained an increasing amount of attention. Unfortunately, the techniques suffer from robustness due to huge variability in vehicle shape (particularly for motorcycles), cluttered environment, various illumination conditions, and driving behavior. In this paper, we provide a comprehensive survey in a systematic approach about the state-of-the-art on-road vision-based vehicle detection and tracking systems for collision avoidance systems (CASs). This paper is structured based on a vehicle detection processes starting from sensor selection to vehicle detection and tracking. Techniques in each process/step are reviewed and analyzed individually. Two main contributions in this paper are the following: survey on motorcycle detection techniques and the sensor comparison in terms of cost and range parameters. Finally, the survey provides an optimal choice with a low cost and reliable CAS design in vehicle industries.
Previous studies reported mental stress as one of the major contributing factors leading to various diseases such as heart attack, depression and stroke. An accurate stress assessment method may thus be of importance to clinical intervention and disease prevention. We propose a joint independent component analysis (jICA) based approach to fuse simultaneous measurement of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) on the prefrontal cortex (PFC) as a means of stress assessment. For the purpose of this study, stress was induced by using an established mental arithmetic task under time pressure with negative feedback. The induction of mental stress was confirmed by salivary alpha amylase test. Experiment results showed that the proposed fusion of EEG and fNIRS measurements improves the classification accuracy of mental stress by +3.4% compared to EEG alone and +11% compared to fNIRS alone. Similar improvements were also observed in sensitivity and specificity of proposed approach over unimodal EEG/fNIRS. Our study suggests that combination of EEG (frontal alpha rhythm) and fNIRS (concentration change of oxygenated hemoglobin) could be a potential means to assess mental stress objectively. References and links1. J. Decker, "The Stress Syndrome," Am. J. Nurs. 65(3), 97-99 (1965). 2. L. R. Murphy, "Stress management in work settings: a critical review of the health effects," Am. J. Health Promot. 11(2), 112-135 (1996). 3. B. Czéh, T. Michaelis, T. Watanabe, J. Frahm, G. de Biurrun, M. van Kampen, A. Bartolomucci, and E. Fuchs, "Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine," Proc. Natl. Acad. Sci. U.S.A. 98(22), 12796-12801 (2001). 4. C. M. Vander Weele, C. Saenz, J. Yao, S. S. Correia, and K. A. Goosens, "Restoration of hippocampal growth hormone reverses stress-induced hippocampal impairment," Front. Behav. Neurosci. 7, 66 (2013). 5. A. Vyas, R. Mitra, B. S. Shankaranarayana Rao, and S. Chattarji, "Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons," J. Neurosci. 22(15), 6810-6818 (2002). 6. B. S. McEwen, "Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators," Eur. J. Pharmacol. 583(2-3), 174-185 (2008). 7. P. C. Strike and A. Steptoe, "Systematic review of mental stress-induced myocardial ischaemia," Eur. Heart J.24(8), 690-703 (2003). 8. A. Tsutsumi, K. Kayaba, and S. Ishikawa, "Impact of occupational stress on stroke across occupational classes and genders," Soc. Sci. Med. 72(10), 1652-1658 (2011). 9. R. A. Ajjan and P. J. Grant, "Cardiovascular disease prevention in patients with type 2 diabetes: The role of oral anti-diabetic agents," Diab. Vasc. Dis. Res. 3(3), 147-158 (2006). 10. C. Hammen, "Stress and depression," Annu. Rev. Clin. Psychol. 1(1), 293-319 (2005 532-545 (1972). 22. T. G. Vrijkotte, L. J. van Doornen, and E. ...
Mental stress has been identified as one of the major contributing factors that leads to various diseases such as heart attack, depression, and stroke. To avoid this, stress quantification is important for clinical intervention and disease prevention. This study aims to investigate the feasibility of exploiting electroencephalography (EEG) signals to discriminate between different stress levels. We propose a new assessment protocol whereby the stress level is represented by the complexity of mental arithmetic (MA) task for example, at three levels of difficulty, and the stressors are time pressure and negative feedback. Using 18-male subjects, the experimental results showed that there were significant differences in EEG response between the control and stress conditions at different levels of MA task with p values < 0.001. Furthermore, we found a significant reduction in alpha rhythm power from one stress level to another level, p values < 0.05. In comparison, results from self-reporting questionnaire NASA-TLX approach showed no significant differences between stress levels. In addition, we developed a discriminant analysis method based on multiclass support vector machine (SVM) with error-correcting output code (ECOC). Different stress levels were detected with an average classification accuracy of 94.79%. The lateral index (LI) results further showed dominant right prefrontal cortex (PFC) to mental stress (reduced alpha rhythm). The study demonstrated the feasibility of using EEG in classifying multilevel mental stress and reported alpha rhythm power at right prefrontal cortex as a suitable index.
This paper presents an investigation about the effects of mental stress on prefrontal cortex (PFC) subregions using simultaneous measurement of functional Near-Infrared Spectroscopy (fNIRS) and Electroencephalography (EEG) signals. The aim is to explore canonical correlation analysis (CCA) technique to study the relationship among the bimodality signals in mental stress assessment, and how we could fuse the signals for better accuracy in stress detection. Twenty-five male healthy subjects participated in the study while performing mental arithmetic task under control and stress (under time pressure with negative feedback) conditions. The fusion of brain signals acquired by fNIRS-EEG was performed at feature-level using CCA by maximizing the inter-subject covariance across modalities. The CCA result discovered the associations across the modalities and estimated the components responsible for these associations. The experiment results showed that mental stress experienced by this cohort of subjects is subregion specific and localized to the right ventrolateral PFC subregion. These suggest the right ventrolateral PFC as a suitable candidate region to extract biomarkers as performance indicators of neurofeedback training in stress coping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.