Lead-free double perovskite nanocrystals (NCs) have emerged as a new category of materials that hold the potential for overcoming the instability and toxicity issues of lead-based counterparts. Doping chemistry represents a unique avenue toward tuning and optimizing the intrinsic optical and electronic properties of semiconductor materials. In this study, we report the first example of doping Yb 3+ ions into lead-free double perovskite Cs 2 AgBiX 6 (X = Cl − , Br − ) NCs via a hot injection method. The doping of Yb 3+ endows the double perovskite NCs with a newly emerged near-infrared emission band (sensitized from the NC hosts) in addition to their intrinsic trap-related visible photoluminescence. By controlling the Yb-doping concentration, the dual emission profiles and photon relaxation dynamics of the double perovskite NCs can be systematically tuned. Furthermore, we have successfully inserted divalent Mn 2+ ions in Cs 2 AgBiCl 6 NCs and observed emergence of dopant emission. Our work illustrates an effective and facile route toward modifying and optimizing optical properties of double perovskite Cs 2 AgBiX 6 (X = Cl − , Br − ) NCs with an indirect bandgap nature, which can broaden a range of their potential applications in optoelectronic devices.
Morphology control represents an important strategy for the development of functional nanomaterials and has yet to be achieved in the case of promising lead-free double perovskite materials so far. In this work, high-quality Cs 2 AgBiX 6 (X = Cl, Br, I) two-dimensional nanoplatelets were synthesized through a newly developed synthetic procedure. By analyzing the optical, morphological, and structural evolutions of the samples during synthesis, we elucidated that the growth mechanism of lead-free double perovskite nanoplatelets followed a lateral growth process from mono-octahedral-layer (half-unit-cell in thickness) cluster-based nanosheets to multilayer (three to four unit cells in thickness) nanoplatelets. Furthermore, we demonstrated that Cs 2 AgBiBr 6 nanoplatelets possess a better performance in photocatalytic CO 2 reduction compared with their nanocube counterpart. Our work demonstrates the first example with two-dimensional morphology of this important class of lead-free perovskite materials, shedding light on the synthetic manipulation and the application integration of such promising materials.
Since Lutz's and coworkers 2006 J. Am. Chem. Soc. paper on thermoresponsive properties of poly-oligo(ethylene glycol) methacrylates (POEGMA), the publications on these polymers have grown rapidly. This highlight will cover some latest progresses in this active field. The selected topics include synthesizing POEGMA with various structures via controlled free radical polymerization techniques, coating flat and particle surfaces with POEGMA to impart thermoresponsive and antifouling properties to the materials, preparing biodegradable nanogels for controlled drug release, and using monodisperse POEGMA microgels as building blocks to form photonic hydrogels. As similarity of thermoresponsive and self-assembling properties between POEGMA and poly-N-isopropylacrylamide (PNIPAM) has been established, many previous works for PNIPAM could be applied to POEGMA polymers. The studies of POEGMA will open a new avenue for stimuli responsive polymer research because the POEGMA has advantages over the PNIPAM including biocompatibility and resistance to absorption of proteins.
Concerns about the toxicity of lead-based perovskites have aroused great interest for the development of alternative lead-free perovskite-type materials. Recently, theoretical calculations predict that Pb 2+ cations can be substituted by a combination of Cu 2+ and Sb 3+ cations to form a vacancy-ordered layered double perovskite structure with superior optoelectronic properties. However, accessibilities to this class of perovskite-type materials remain inadequate, hindering their practical implementations in various applications. Here, we report the first colloidal synthesis of Cs 4 CuSb 2 Cl 12 perovskite-type nanocrystals (NCs). The resulting NCs exhibit a layered double perovskite structure with ordered vacancies and a direct band gap of 1.79 eV. A composition−structure−property relationship has been established by investigating a series of Cs 4 Cu x Ag 2−2x Sb 2 Cl 12 perovskite-type NCs (0 ≤ x ≤ 1). The composition induced crystal structure transformation, and thus, the electronic band gap evolution has been explored by experimental observations and further confirmed by theoretical calculations. Taking advantage of both the unique electronic structure and solution processability, we demonstrate that the Cs 4 CuSb 2 Cl 12 NCs can be solution-processed as high-speed photodetectors with ultrafast photoresponse and narrow bandwidth. We anticipate that our study will prompt future research to design and fabricate novel and high-performance lead-free perovskite-type NCs for a range of applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.