BackgroundHigher matrix stiffness affects biological behavior of tumor cells, regulates tumor-associated gene/miRNA expression and stemness characteristic, and contributes to tumor invasion and metastasis. However, the linkage between higher matrix stiffness and pre-metastatic niche in hepatocellular carcinoma (HCC) is still largely unknown.MethodsWe comparatively analyzed the expressions of LOX family members in HCC cells grown on different stiffness substrates, and speculated that the secreted LOXL2 may mediate the linkage between higher matrix stiffness and pre-metastatic niche. Subsequently, we investigated the underlying molecular mechanism by which matrix stiffness induced LOXL2 expression in HCC cells, and explored the effects of LOXL2 on pre-metastatic niche formation, such as BMCs recruitment, fibronectin production, MMPs and CXCL12 expression, cell adhesion, etc.ResultsHigher matrix stiffness significantly upregulated LOXL2 expression in HCC cells, and activated JNK/c-JUN signaling pathway. Knockdown of integrin β1 and α5 suppressed LOXL2 expression and reversed the activation of above signaling pathway. Additionally, JNK inhibitor attenuated the expressions of p-JNK, p-c-JUN, c-JUN and LOXL2, and shRNA-c-JUN also decreased LOXL2 expression. CM-LV-LOXL2-OE and rhLOXL2 upregulated MMP9 expression and fibronectin production obviously in lung fibroblasts. Moreover, activation of Akt pathway contributed to LOXL2-induced fibronectin upregulation. LOXL2 in CM as chemoattractant increased motility and invasion of BMCs, implicating a significant role of LOXL2 in BMCs recruitment. Except that, CM-LV-LOXL2-OE as chemoattractant also increased the number of migrated HCC cells, and improved chemokine CXCL12 expression in lung fibroblasts. The number of HCC cells adhered to surface of lung fibroblasts treated with CM-LV-LOXL2-OE was remarkably higher than that of the control cells. These results indicated that the secreted LOXL2 facilitated the motility of HCC cells and strengthened CTCs settlement on the remodeled matrix “soil”.ConclusionIntegrin β1/α5/JNK/c-JUN signaling pathway participates in higher matrix stiffness-induced LOXL2 upregulation in HCC cells. The secreted LOXL2 promotes fibronectin production, MMP9 and CXCL12 expression and BMDCs recruitment to assist pre-metastatic niche formation.Electronic supplementary materialThe online version of this article (10.1186/s13046-018-0761-z) contains supplementary material, which is available to authorized users.
BackgroundAlthough transarterial chemoembolization (TACE) has been used extensively for advanced hepatocellular carcinoma (HCC) with portal vein tumor thrombus (PVTT), no consensus has been reached and an evidence base for practice is lacking. This meta-analysis evaluated the efficacy and safety of TACE for treatment of HCC with PVTT.MethodsOvid Medline, EMBASE, Web of Knowledge, and Cochrane library databases were searched up to August 2012 for controlled trials assessing TACE in patients with PVTT. Data concerning the study design, characteristics of trials, and outcomes were extracted. Hazard ratio (HR) and 95% confidence interval (CI) were calculated using random effects models.ResultsEight controlled trials involving 1601 HCC patients were included. TACE significantly improved the 6-month (HR, 0.41; 95% CI: 0.32–0.53; z, 6.28; p = 0.000) and 1-year (HR, 0.44; 95% CI: 0.34–0.57; z, 6.22; p = 0.000) overall survival of patients with PVTT compared with conservative treatment. Subgroup analyses showed that TACE was significantly effective in HCC patients whether with main portal vein (MPV) obstruction or with segmental PVTT. Fatal complications were rare, even in patients with MPV obstruction. Temporary liver decompensation and postembolization syndrome occurred frequently. However, they could be treated successfully with conservative treatment.ConclusionsTACE, as a safe treatment, has potential for incurring a survival benefit for advanced HCC with PVTT, even with MPV obstruction. Further large randomized controlled trials may be needed to confirm this result.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.