The failure of the motor or controller of a motor servo system could lead to terrible casualties and property loss in fields such as aviation and transportation. Current research mainly focuses on the algorithm for fault-tolerant control and the topological structure of hardware. Such approaches may reduce the system frequency through the use of a complex algorithm or increase the system cost through the use of special components. The present paper proposes and tests a multi-redundant, permanent-magnet synchronous motor. Through the parallel connection of multiple independent windings and a supporting control method that controls each redundancy separately, the system continues to run even when the winding or controller of one redundancy suffers an open-circuit or short-circuit fault. The system controller is easy to build and minimize without special components and does not require additional algorithms.
Purpose
As a type of angular displacement sensor, the Hall-effect magnetic encoder incorporates many advantages. While compared with the photoelectric encoder, the magnetic encoder nevertheless has lower precision and lower resolution. So, the purpose of this essay is to find a way to increase the precision and resolution of the magnetic encoder.
Design/methodology/approach
By combining a single-pole magnetic encoder and a multi-pole AlNiCo magnet, the precision and resolution of this combined magnetic encoder are increased without increasing its volume or complicating its structure. A special algorithm system is developed to ensure faithful encoding and decoding.
Findings
Tests show that the combined magnetic encoder, with a diameter of 67.12 mm (including shaft) and thickness of 6.9 mm, has a precision of ±6′, compared with a 15-bit photoelectric encoder and a static resolution of ±0.6′.
Originality/value
This new kind of magnetic encoder could be used in specialized fields which need high-precision servo-control systems that are small, have ultra-low-speed and high-speed ratios and are non-oil-polluting or shock-resistant.
To fulfill the requirement of fields such as robotics, aviation, and special machining, motors with quill shafts or outer rotors have been used. For these special motors, the photoelectric encoder’s volume is normally too big and easy to be polluted by oil or dust; magnetic encoder normally has poor accuracy, and alnico piece may not provide enough magnetic field coverage area. The aim of this essay is to find a new structure of magnetic encoder to improve the precision and magnetic field coverage area. By using two multi-pole alnico rings with a different number of pole pairs to provide a magnetic field, the coverage area could be improved. The position differences between two alnicos pole positions are used to calculate absolute angle value, so the accuracy of the encoder could be absolute and no less than that of a combined magnetic encoder with the same number of pole pairs. A special algorithm is proposed for decoding. This new kind of magnetic encoder could be used on special motors with quill shafts or outer rotors. Its volume and weight are less than the photoelectric encoder and have better performance on antipollution. The alnico ring is easy to modify to suit the structure of the motor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.