Objectives Heart failure with mildly reduced ejection fraction (HFmrEF) or heart failure with preserved ejection fraction (HFpEF) are associated with significant morbidity and mortality, as well as growing health and economic burden. Sodium-glucose co-transporter 2 (SGLT2) inhibitors are very promising for the outcome improvement of patients with HFpEF or HFmrEF. The meta-analysis was performed to investigate the effects of SGLT2 inhibitors in HFpEF or HFmrEF, by pooling data from all clinically randomized controlled trials (RCTs) available to increase power to testify. Methods Studies were searched in electronic databases from inception to November, 2022. We performed a meta-analysis to estimate the effect of SGLT2 inhibitors on clinical endpoints in patients with HFpEF or HFmrEF, using trial-level data with consistent endpoint definitions. The primary outcome was the composite of heart failure (HF) hospitalization or cardiovascular death. Hazard ratio (HR) was pooled with 95% confidence interval (CI) for dichotomous data. This study was registered with INPLASY 2022110095. Results Six studies involving 15,989 participants were included into the final analysis. Pooled analyses revealed that SGLT2 inhibitors significantly reduced the composite of HF hospitalization or cardiovascular death [HR: 0.79 (0.72–0.85); I2 = 0%; P < 0.00001] and HF hospitalizations [HR: 0.74 (0.67–0.82); I2 = 0%; P < 0.00001]. This finding was seen in both HFmrEF trials [HR: 0.76 (0.67–0.87); I2 = 49%; P < 0.0001] and HFpEF subgroup studies [HR: 0.70 (0.53–0.93); I2 = 0%; P = 0.01]. The incidence of any serious adverse events [OR: 0.89 (0.83–0.96); I2 = 0%; P = 0.002] was significantly lower in the SGLT2 inhibitor arm. No significant differences were observed between the two groups with regard to cardiovascular death and all-cause death. Conclusions This meta-analysis of patients with heart failure of left ventricular ejection fraction (LVEF) > 40% showed that SGLT2 inhibitors significantly reduce the risk of the composite of cardiovascular death and hospitalization for heart failure, but not cardiovascular death and all-cause death. Nevertheless, given that SGLT2 inhibitors may reduce the risk of hospitalization for heart failure, they should be considered the fundamental treatment for all patients with HFpEF or HFmrEF.
Diabetic cardiomyopathy (DCM) is a myocardial disease independent of other cardiovascular diseases, such as coronary heart disease, hypertension, etc. Lipotoxicity is closely related to DCM. In this study, we investigated the mechanism of lipid metabolism disturbance in DCM in HL-1 cells. Through bioinformatics and Western blotting analysis, we found that canagliflozin (CAN) significantly inhibited the expression of inflammatory factors cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Ferroptosis is mediated by lipid peroxidation. We demonstrated the presence of ferroptosis in cardiomyocytes by detecting intracellular Fe2+ content and the levels of reactive oxygen species (ROS), malondialdehyde (MDA), reduced glutathione (GSH), and mitochondrial membrane potential (MMP). CAN could significantly regulate the indicators of ferroptosis. By using specific inhibitors celecoxib (coxib), S-methylisothiourea sulfate (SMT), Ferrostatin-1 (Fer-1), and Compound C, we further found that CAN regulated inflammation and ferroptosis through AMP-activated protein (AMPK), and inflammation interacted with ferroptosis. Our study indicated that CAN attenuated lipotoxicity in cardiomyocytes by regulating inflammation and ferroptosis through activating the AMPK pathway. This study provides a new direction of myocardial lipotoxicity and some new information for the treatment of DCM.
This study aims to investigate the regulatory effect of Xuesaitong (XST) and miR-3158-3p on angiogenesis. All mice were randomly assigned into Sham group, Model group, XST group, XST + miR-3158-3P-overexpression (miRNA-OE) group. XST was found to increase the left ventricular anterior wall thickness at end diastole and end systole (LVAWd and LVAWs), left ventricular internal dimension at end diastole and end systole (LVIDd and LVIDs), fractional shortening (FS), and ejection fraction (EF) and decrease the proportion of fibrotic areas in mice. In contrast to those in Sham group, the protein expressions of Nur77, p-PI3K, HIF-1α, VEGFs, COX-2 in the heart tissues of mice in Model group were elevated and further increased after XST treatment in comparison with those in Model group. Nur77-/- mice were utilized. It was found that XST enhanced cell viability through a methyl thiazolyl tetrazolium assay and facilitated angiogenesis in each group, as assessed by a catheter formation assay. Specifically, XST was shown to promote the formation of blood vessels. Moreover, the protein expression levels of Associated proteins in the heart tissues of Nur77-/- mice were dramatically reduced in mice in Model and XST group compared with those in WT mice. Additionally, the above-mentioned protein expressions in the heart tissues of Nur77-/- mice did not change significantly in mice in Model + miRNA-OE + XST group compared with those in WT mice, suggesting that miR-3158-3p can specifically inhibit the expression of Nur77. In conclusion, XST inhibits miR-3158-3p targeting Nur77 to facilitate myocardial angiogenesis in mice with myocardial infarction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.