Systematic mapping of protein-protein interactions, or 'interactome' mapping, was initiated in model organisms, starting with defined biological processes and then expanding to the scale of the proteome. Although far from complete, such maps have revealed global topological and dynamic features of interactome networks that relate to known biological properties, suggesting that a human interactome map will provide insight into development and disease mechanisms at a systems level. Here we describe an initial version of a proteome-scale map of human binary protein-protein interactions. Using a stringent, high-throughput yeast two-hybrid system, we tested pairwise interactions among the products of approximately 8,100 currently available Gateway-cloned open reading frames and detected approximately 2,800 interactions. This data set, called CCSB-HI1, has a verification rate of approximately 78% as revealed by an independent co-affinity purification assay, and correlates significantly with other biological attributes. The CCSB-HI1 data set increases by approximately 70% the set of available binary interactions within the tested space and reveals more than 300 new connections to over 100 disease-associated proteins. This work represents an important step towards a systematic and comprehensive human interactome project.
BACKGROUND Specific dietary and other lifestyle behaviors may affect the success of the straightforward-sounding strategy “eat less and exercise more” for preventing long-term weight gain. METHODS We performed prospective investigations involving three separate cohorts that included 120,877 U.S. women and men who were free of chronic diseases and not obese at baseline, with follow-up periods from 1986 to 2006, 1991 to 2003, and 1986 to 2006. The relationships between changes in lifestyle factors and weight change were evaluated at 4-year intervals, with multivariable adjustments made for age, baseline body-mass index for each period, and all lifestyle factors simultaneously. Cohort-specific and sex-specific results were similar and were pooled with the use of an inverse-variance–weighted meta-analysis. RESULTS Within each 4-year period, participants gained an average of 3.35 lb (5th to 95th percentile, −4.1 to 12.4). On the basis of increased daily servings of individual dietary components, 4-year weight change was most strongly associated with the intake of potato chips (1.69 lb), potatoes (1.28 lb), sugar-sweetened beverages (1.00 lb), unprocessed red meats (0.95 lb), and processed meats (0.93 lb) and was inversely associated with the intake of vegetables (−0.22 lb), whole grains (−0.37 lb), fruits (−0.49 lb), nuts (−0.57 lb), and yogurt (−0.82 lb) (P≤0.005 for each comparison). Aggregate dietary changes were associated with substantial differences in weight change (3.93 lb across quintiles of dietary change). Other lifestyle factors were also independently associated with weight change (P<0.001), including physical activity (−1.76 lb across quintiles); alcohol use (0.41 lb per drink per day), smoking (new quitters, 5.17 lb; former smokers, 0.14 lb), sleep (more weight gain with <6 or >8 hours of sleep), and television watching (0.31 lb per hour per day). CONCLUSIONS Specific dietary and lifestyle factors are independently associated with long-term weight gain, with a substantial aggregate effect and implications for strategies to prevent obesity. (Funded by the National Institutes of Health and others.)
In apparently scale-free protein-protein interaction networks, or 'interactome' networks, most proteins interact with few partners, whereas a small but significant proportion of proteins, the 'hubs', interact with many partners. Both biological and non-biological scale-free networks are particularly resistant to random node removal but are extremely sensitive to the targeted removal of hubs. A link between the potential scale-free topology of interactome networks and genetic robustness seems to exist, because knockouts of yeast genes encoding hubs are approximately threefold more likely to confer lethality than those of non-hubs. Here we investigate how hubs might contribute to robustness and other cellular properties for protein-protein interactions dynamically regulated both in time and in space. We uncovered two types of hub: 'party' hubs, which interact with most of their partners simultaneously, and 'date' hubs, which bind their different partners at different times or locations. Both in silico studies of network connectivity and genetic interactions described in vivo support a model of organized modularity in which date hubs organize the proteome, connecting biological processes--or modules--to each other, whereas party hubs function inside modules.
High-Quality Binary Protein Interaction Map of the www.sciencemag.org (this information is current as of October 28, 2009 ):The following resources related to this article are available online at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.