In this work, by using three-dimensional finite-difference time-domain (3D FDTD) method, the effect of conventional nano-patterned sapphire substrate (NPSS) on the optical crosstalk and the light extraction efficiency (LEE) for InGaN/GaN-based flip-chip micro light-emitting diodes (µ-LEDs) are systematically studied. We find that the conventional NPSS is not suitable for µ-LEDs. It is because the inclined mesa sidewall for µ-LEDs possesses a good scattering effect for µ-LEDs, but the introduced conventional NPSS causes part of the light be off escape cone between sapphire and air and become the guided light. To suppress the guided light and improve the optical crosstalk, a thick air layer between the n-GaN layer and the sapphire substrate can be used as a light filter to prevent the guided light from propagating into the sapphire. However, in reality, it is challenging to make the aforementioned air layer from point of fabrication view. Therefore, we propose the air-cavity patterned sapphire substrate (AC-PSS) as the light filter. Our results show that the crosstalk ratio can be decreased to the value even lower than 10%. The LEE can also be enhanced simultaneously due to combination effects of the filtering effect of the AC-PSS and the scattering effect of the inclined mesa sidewall.
Low light extraction efficiency (LEE), high forward voltage and severe self-heating effect greatly affect the performance for AlGaN-based deep ultraviolet light-emitting diodes (DUV LEDs). In this work, surface-textured Ga-face n-AlGaN is fabricated low-costly using self-assembled SiO2 nanosphere as hard mask. The experimental results manifest that when compared with conventional DUV LEDs, the optical power, the forward voltage and the thermal characteristics for the DUV LEDs with surface-textured Ga-face n-AlGaN are improved obviously. It is because the surface-textured Ga-face n-AlGaN between mesa and the n-electrode can be used as the scattering center for trapped light, and this leads to the enhanced LEE. Furthermore, thanks to the surface-textured n-AlGaN under the n-electrode, the n-type ohmic contact area can be increased effectively. Therefore, the n-type ohmic contact resistance can be reduced and the better heat dissipation can be attained for the proposed flip-chip DUV LED.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.