The existing deep learning models have problems such as large weight parameters and slow inference speed of equipment. In practical applications such as fire detection, they often cannot be deployed on equipment with limited resources due to the huge amount of parameters and low efficiency. In response to this problem, this paper proposes a lightweight smoke detection model based on the convolutional attention mechanism module. The model is based on the YOLOv5 lightweight framework. The backbone network draws on the GhostNet design idea, replaces the CSP structure of the FPN and head layers with the GhostBottleNeck module, adds a convolutional attention mechanism module to the backbone network layer, and uses the CIoU loss function to improve the regression accuracy. Using YOLOv5s as the benchmark model, the parameter amount of the proposed lightweight neural network model is 2.75 M, and the floating-point calculation amount is 2.56 G, which is much lower than the parameter amount and calculation amount of the benchmark model. Tested on the public fire dataset, compared with the traditional deep learning algorithm, the model proposed in the paper has better detection performance and the detection speed is significantly better than the benchmark model. Tested under the unquantized simulator, the speed of the proposed model to detect a single picture is 60 ms, which can meet the requirements of real-time engineering applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.