In the present study depth profiles of light, oxygen, pH and photosynthetic performance in an artificial biofilm of the green alga Halochlorella rubescens in a porous substrate photobioreactor (PSBR) were recorded with microsensors. Biofilms were exposed to different light intensities (50-1,000 μmol photons m(-2) s(-1) ) and CO2 levels (0.04-5% v/v in air). The distribution of photosynthetically active radiation showed almost identical trends for different surface irradiances, namely: a relatively fast drop to a depth of about 250 µm, (to 5% of the incident), followed by a slower decrease. Light penetrated into the biofilm deeper than the Lambert-Beer Law predicted, which may be attributed to forward scattering of light, thus improving the overall light availability. Oxygen concentration profiles showed maxima at a depth between 50 and 150 μm, depending on the incident light intensity. A very fast gas exchange was observed at the biofilm surface. The highest oxygen concentration of 3.2 mM was measured with 1,000 μmol photons m(-2) s(-1) and 5% supplementary CO2. Photosynthetic productivity increased with light intensity and/or CO2 concentration and was always highest at the biofilm surface; the stimulating effect of elevated CO2 concentration in the gas phase on photosynthesis was enhanced by higher light intensities. The dissolved inorganic carbon concentration profiles suggest that the availability of the dissolved free CO2 has the strongest impact on photosynthetic productivity. The results suggest that dark respiration could explain previously observed decrease in growth rate over cultivation time in this type of PSBR. Our results represent a basis for understanding the complex dynamics of environmental variables and metabolic processes in artificial phototrophic biofilms exposed to a gas phase and can be used to improve the design and operational parameters of PSBRs.
The potential of biofilm-based photobioreactors (PBRs) for various applications has long been recognized, and various types of biofilm-based PBRs have been developed for different applications. Compared to suspension-based PBR reactors, biofilm-based systems offer several advantages, including a significantly higher biomass concentration. However, due to the immobilization of the cells, in contrast to suspension-based systems, dissolved inorganic carbon (DIC) has to be transferred into the biofilm for consumption. Thus, to ensure efficient operation of these systems under a given lighting scheme (e.g. depending on geographical location), availability of DIC should be optimized. To achieve this, the dynamics of DIC inside the various biofilm-based PBRs, as well as the operational principles of these PBRs, need to be understood. The mini-review summarizes the designs of existing biofilm-based PBRs and reviews previous studies on DIC dynamics in various biofilms. Strategies to enhance DIC availability for the immobilized cells in biofilm-based PBRs are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.