Conventional neural networks tend to fall into local extremum on large datasets, while the research on the strength of rubber concrete using intelligent algorithms to optimize artificial neural networks is limited. Therefore, to improve the prediction accuracy of rubber concrete strength, an artificial neural network model with hybrid algorithm optimization was developed in this study. The main strategy is to mix the simulated annealing (SA) algorithm with the particle swarm optimization (PSO) algorithm, using the SA algorithm to compensate for the weak global search capability of the PSO algorithm at a later stage while changing the inertia factor of the PSO algorithm to an adaptive state. For this purpose, data were first collected from the published literature to create a database. Next, ANN and PSO-ANN models are also built for comparison while four evaluation metrics, MSE, RMSE, MAE, and R2, were used to assess the model performance. Finally, compared with empirical formulations and other neural network models, the result shows that the proposed optimized artificial neural network model successfully improves the accuracy of predicting the strength of rubber concrete. This provides a new option for predicting the strength of rubber concrete.
The addition of rubber to concrete improves resistance to chloride ion attacks. Therefore, rapidly determining the chloride permeability coefficient (DCI) of rubber concrete (RC) can contribute to promotion in coastal areas. Most current methods for determining DCI of RC are traditional, which cannot account for multi-factorial effects and suffer from low prediction accuracy. Machine learning (ML) techniques have good non-linear learning capabilities and can consider the effects of multiple factors compared with traditional methods. However, ML models easily fall into the local optimum due to their parameters’ influence. Therefore, a mixed whale optimization algorithm (MWOA) was developed in this paper to optimize ML models. The main strategies are to introduce Tent mapping to expand the search range of the algorithm, to use an adaptive t-distribution dimension-by-dimensional variation strategy to perturb the optimal fitness individual to thereby improve the algorithm’s ability to jump out of the local optimum, and to introduce adaptive weights and adaptive probability threshold values to enhance the adaptive capacity of the algorithm. For this purpose, data were collected from the published literature. Three machine learning models, Extreme Learning Machine (ELM), Random Forest (RF), and Elman Neural Network (ELMAN), were built to predict the DCI of RC, and the three models were optimized using MWOA. The calculations show that the MWOA is effective with the optimized ELM, RF, and ELMAN models improving the prediction accuracy by 54.4%, 62.9%, and 36.4% compared with the initial model. The MWOA-ELM model was found to be the optimal model after a comparative analysis. The accuracy of the multiple linear regression model (MRL) and the traditional mathematical model is calculated to be 87.15% and 85.03%, which is lower than that of the MWOA-ELM model. This indicates that the ML model that is optimized using the improved whale optimization algorithm has better predictive ability than traditional models, providing a new option for predicting the DCI of RC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.