Angiosperm sexual systems are fundamental to the evolution and distribution of plant diversity, yet spatiotemporal patterns in angiosperm sexual systems and their drivers remain poorly known. Using data on sexual systems and distributions of 68453 angiosperm species, we present the first global maps of sexual system frequencies and evaluate sexual system evolution during the Cenozoic. Frequencies of dioecy and monoecy increase with latitude, while hermaphrodites are more frequent in warm and arid regions. Transitions to dioecy from other states were higher than to hermaphroditism, but transitions away from dioecy increased since the Cenozoic, suggesting that dioecy is not an evolutionary end point. Transitions between hermaphroditism and dioecy increased, while transitions to monoecy decreased with paleo‐temperature when paleo‐temperature >0℃. Our study demonstrates the biogeography of angiosperm sexual systems from a macroecological perspective, and enhances our understanding of plant diversity patterns and their response to climate change.
A key challenge in ecology is to understand the relationships between organismal traits and ecosystem processes. Here, with a novel dataset of leaf length and width for 10 480 woody dicots in China and 2374 in North America, we show that the variation in community mean leaf size is highly correlated with the variation in climate and ecosystem primary productivity, independent of plant life form. These relationships likely reflect how natural selection modifies leaf size across varying climates in conjunction with how climate influences canopy total leaf area. We find that the leaf size-primary productivity functions based on the Chinese dataset can predict productivity in North America and vice-versa. In addition to advancing understanding of the relationship between a climate-driven trait and ecosystem functioning, our findings suggest that leaf size can also be a promising tool in palaeoecology for scaling from fossil leaves to palaeo-primary productivity of woody ecosystems.
Aim: Sexual systems strongly influence angiosperm evolution and play important roles in community assembly and species responses to climate change. However, geographical variation in proportions of different sexual systems (dioecy, monoecy and hermaphroditism) in response to changes in climate, life-history traits and evolutionary age remains poorly understood. Here, we map the geographical variation in proportions of different sexual systems and hypothesize that the prevalence of hermaphrodites increases with aridity owing to their advantages in colonizing harsh environments, whereas dioecy is most successful in humid regions with tall-canopy vegetation and old floras. Location: China. Time period: Current. Major taxa studied: Woody angiosperms. Methods: Using data on sexual systems and distributions of 10,449 woody species in China, we estimated the proportions of different sexual systems in local floras (50 km × 50 km grid cells). Spatial linear models, phylogenetic general linear models and structural equation models were used to compare the relative influences of climate, plant height and evolutionary age on geographical variation in proportions of different sexual systems. Results: We found contrasting geographical patterns in the proportions of different sexual systems. The proportions of dioecy and monoecy increased with plant height | 547 WANG et Al.
T cell factor-1 (TCF-1) (encoded by the TCF7 gene) is a transcription factor that plays important role during the T cell development and differentiation for T cell to exercise its functions including producing memory T cells. Not only TCF-1 can modulate the T cell development but also exerts various effects on the differentiation and function of mature CD8 + T cells. In addition, it drives the production and maintenance of the immune response of CD8 + T cells after PD-1 checkpoint blockade therapy. TCF-1 can serve as a potential target of immunotherapy and may provide promising novel treatment strategies for patients with cancer and infections. Moreover, TCF-1 is a potential biomarker of CD8 + T cell functionality to predict the efficacy of immunotherapy in fighting against cancer and infections. Herein, we summarize the role of TCF-1 in T cell development and its applications in the treatment of cancer and infectious diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.