Deep convolutional neural networks (DCNNs) have achieved great empirical success in many fields such as natural language processing, computer vision, and pattern recognition. But there still lacks theoretical understanding of the flexibility and adaptivity of DCNNs in various learning tasks, and the power of DCNNs at feature extraction. We propose a generic DCNN structure consisting of two groups of convolutional layers associated with two downsampling operators, and a fully connected layer, which is determined only by three structural parameters. Our generic DCNNs are capable of extracting various features including not only polynomial features but also general smooth features. We also show that the curse of dimensionality can be circumvented by our DCNNs for target functions of the compositional form with (symmetric) polynomial features, spatially sparse smooth features, and interaction features. These demonstrate the expressive power of our DCNN structure, while the model selection can be relaxed comparing with other deep neural networks since there are only three hyperparameters controlling the architecture to tune.
The efficiency of deep convolutional neural networks (DCNNs) has been demonstrated empirically in many practical applications. In this paper, we establish a theory for approximating functions from Korobov spaces by DCNNs. It verifies rigorously the efficiency of DCNNs in approximating functions of many variables with some variable structures and their abilities in overcoming the curse of dimensionality.
We consider a family of deep neural networks consisting of two groups of convolutional layers, a downsampling operator, and a fully connected layer. The network structure depends on two structural parameters which determine the numbers of convolutional layers and the width of the fully connected layer. We establish an approximation theory with explicit approximation rates when the approximated function takes a composite form f • Q with a feature polynomial Q and a univariate function f . In particular, we prove that such a network can outperform fully connected shallow networks in approximating radial functions with Q(x) = |x| 2 , when the dimension d of data from R d is large. This gives the first rigorous proof for the superiority of deep convolutional neural networks in approximating functions with special structures. Then we carry out generalization analysis for empirical risk minimization with such a deep network in a regression framework with the regression function of the form f • Q. Our network structure which does not use any composite information or the functions Q and f can automatically extract features and make use of the composite nature of the regression function via tuning the structural parameters. Our analysis provides an error bound which decreases with the network depth to a minimum and then increases, verifying theoretically a trade-off phenomenon observed for network depths in many practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.