Lignocellulose, as the most abundant type of inedible biomass, is considered as a promising renewable feedstock for making fuels, chemicals, and materials. However, its complex structure makes most of current biorefinery processes suffer from low resource utilization rates, high energy consumption or ill-defined market orientation of the obtained products. Here, we propose and evaluate the EXA (Ethanol, Xylose, Adhesive) biorefinery strategy based on current xylose industry. This process integrates four conversion and separation stages to consecutively produce ethanol, xylose, and adhesive with total carbon utilization of 79.6%. The key innovation is the establishment of an easy-to-operate process for direct production of high-quality adhesive from a lignin-rich liquid fraction that makes the overall process significantly more sustainable. Techno-economic analysis (TEA) shows that the revenue of proposed EXA process increases more than 110 times compares with the current process and life cycle assessment (LCA) demonstrates a much lower CO 2 footprint from an environmental burden per unit of revenue perspective.
Fungal treatment followed by FeCl3 treatment was used to improve saccharification of wood from Populus tomentosa. Combined treatments accumulated lignin and slightly degraded cellulose, whereas almost all hemicelluloses were removed. The white rot fungus, Trametes orientalis, and the brown rot fungus, Fomitopsis palustris, both accompanied by FeCl3 post-treatment resulted in 98.8 and 99.7 % of hemicelluloses loss at 180 °C, respectively, which were over twice than that of hot water pretreatment at the same level. In addition, the solid residue from the T. orientalis-assisted and F. palustris-assisted FeCl3 treatment at 180 °C released 84.5 and 95.4 % of reducing sugars, respectively: 1.4- and 1.6-fold higher than that of FeCl3 treatment alone at the same temperature. Combined treatments disrupted the intact cell structure and increased accessible surface area of cellulose therefore enhancing the enzymatic digestibility, as evidenced by XRD and SEM analysis data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.