To improve the solidification structure of H13 steel, rare earth sulfide (Ce−S) is used as the nucleation core of δ‐ferrite or γ‐austenite to refine the original austenite grain. The relationship between rare earth inclusions and grain refinement is discussed in terms of the type, distribution, size, number, and formation characteristic of rare earth inclusions. The results show that to form a large amount of Ce−S (> 35 mm−2) and inhibit the formation of rare earth oxide (Ce−O), rare earth oxysulfide (Ce−O−S), and MnS, the content of O, S, and Ce must be strictly controlled. Most Ce−S in the solidification structure is located in the original austenite grain interior, indicating that Ce−S can act as the nucleation core of δ‐ferrite or γ‐austenite. The most effective size of Ce−S as nucleation core is 1−2 μm, followed by 2−3 μm, and the Ce−S with the size larger than 3 μm has the least effect. The original austenite grain size is related to the number density of Ce−S, and the higher the number density of Ce−S, the smaller the grain size. The precipitation size of Ce−S during solidification is mostly 1−3 μm, and these Ce−S can act as the nucleation core more effectively.
Nonmetallic inclusions are harmful to the quality of 42CrMo4 steel. Therefore, the formation and removal mechanism of inclusions in 42CrMo4 steel during the steelmaking process is investigated by industrial trials. The characteristics of inclusions in specimens were analyzed by scanning electron microscopy and energy dispersive spectroscopy. The main type of inclusions in molten steel in the early stage of ladle furnace (LF) refining is MgO-Al2O3 inclusions of irregular shape. CaO begins to appear in MgO-Al2O3 inclusions in the middle and late stages of LF. In the vacuum degassing (VD) refining stage, the inclusions in molten steel completely change into low-melting-point CaO-MgO-Al2O3 inclusions. The existence of [Mg] in molten steel is the fundamental reason for the formation of a large number of MgO-Al2O3 inclusions. Thermodynamic calculation shows that the refractory mainly transfers [Mg] to the liquid steel in the LF refining stage, whereas the slag mainly transfers [Mg] to the liquid steel in the VD refining stage. Kinetic calculation indicates that MgO-Al2O3 inclusions could be removed from molten steel faster than low-melting-point CaO-MgO-Al2O3 inclusions. The fundamental reason for the different removal behavior of the two types of inclusions is that the interfacial tension between the low-melting-point CaO-MgO-Al2O3 inclusions and the liquid steel is 50% lower than that of the MgO-Al2O3 inclusions.
Few reports exist on the effect of the basicity of refining slag on inclusions in 15-5PH stainless steel and its removal efficiency. In this study, the effects of various basicities on the formation and removal efficiency of inclusions in molten steel were investigated. To investigate the effect of the chemical makeup of slag on the non-metallic inclusions in liquid steel, laboratory experiments and thermodynamic calculations were conducted on CaO-MgO-SiO2-Al2O3-CaF2 slag with various slag basicities and 15-5PH stainless steel. In the steel samples that had reacted with high-basicity slag samples, the magnesium content and aluminum yield were higher. Thermodynamic findings according to the ion and molecule coexistence theory showed that log (aSiO23/aAl2O32) decreases as slag basicity increases. This increases the Al concentration in liquid steel while decreasing the Si content. Log (aMgO3/aAl2O3) also increases, increasing the Mg content of the molten steel. With this, the transformation order of oxide inclusions is Al2O3 → MgAl2O4 → MgO. High-basicity slag increases the attachment of slag to inclusions and generates MgAl2O4 inclusions that are more easily adsorbed by inclusions in molten steel, thereby improving the cleanliness of molten steel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.