Recent studies have implicated the signaling factor Sonic hedgehog (Shh) as a negative regulator of pancreatic development, but as a positive regulator of pancreas function in amniotes [1-4]. Here, using genetic analysis, we show that specification of the pancreas in the teleost embryo requires the activity of Hh proteins. Zebrafish embryos compromised in Hh signaling exhibit disruption in the expression of the pancreas-specifying homeobox gene pdx-1 and concomitantly show almost complete absence of the endocrine pancreas. Reciprocally, ubiquitous activation of the Hh pathway in wild-type embryos causes ectopic induction of endodermal pdx-1 expression and the differentiation of supernumerary endocrine cells. Our results suggest that Hh proteins influence pancreas specification via inductive interactions from the axial midline rather than through their localized expression in the endodermal cells themselves.
Centrality is one of the most studied concepts in network analysis. Despite an abundance of methods for measuring centrality in social networks has been proposed, each approach exclusively characterizes limited parts of what it implies for an actor to be "vital" to the network. In this paper, a novel mechanism is proposed to quantitatively measure centrality using the re-defined entropy centrality model, which is based on decompositions of a graph into subgraphs and analysis on the entropy of neighbor nodes. By design, the re-defined entropy centrality which describes associations among node pairs and captures the process of influence propagation can be interpreted explained as a measure of actor potential for communication activity. We evaluate the efficiency of the proposed model by using four real-world datasets with varied sizes and densities and three artificial networks constructed by models including Barabasi-Albert, Erdos-Renyi and Watts-Stroggatz. The four datasets are Zachary's karate club, USAir97, Collaboration network and Email network URV respectively. Extensive experimental results prove the effectiveness of the proposed method.
Purpose To assess whether a generative adversarial network (GAN) could synthesize realistic optical coherence tomography (OCT) images that satisfactorily serve as the educational images for retinal specialists, and the training datasets for the classification of various retinal disorders using deep learning (DL). Methods The GANs architecture was adopted to synthesize high-resolution OCT images trained on a publicly available OCT dataset, including urgent referrals (37,206 OCT images from eyes with choroidal neovascularization, and 11,349 OCT images from eyes with diabetic macular edema) and nonurgent referrals (8617 OCT images from eyes with drusen, and 51,140 OCT images from normal eyes). Four hundred real and synthetic OCT images were evaluated by two retinal specialists (with over 10 years of clinical retinal experience) to assess image quality. We further trained two DL models on either real or synthetic datasets and compared the performance of urgent versus nonurgent referrals diagnosis tested on a local (1000 images from the public dataset) and clinical validation dataset (278 images from Shanghai Shibei Hospital). Results The image quality of real versus synthetic OCT images was similar as assessed by two retinal specialists. The accuracy of discrimination of real versus synthetic OCT images was 59.50% for retinal specialist 1 and 53.67% for retinal specialist 2. For the local dataset, the DL model trained on real (DL_Model_R) and synthetic OCT images (DL_Model_S) had an area under the curve (AUC) of 0.99, and 0.98, respectively. For the clinical dataset, the AUC was 0.94 for DL_Model_R and 0.90 for DL_Model_S. Conclusions The GAN synthetic OCT images can be used by clinicians for educational purposes and for developing DL algorithms. Translational Relevance The medical image synthesis based on GANs is promising in humans and machines to fulfill clinical tasks.
Abstract:Measuring centrality has recently attracted increasing attention, with algorithms ranging from those that simply calculate the number of immediate neighbors and the shortest paths to those that are complicated iterative refinement processes and objective dynamical approaches. Indeed, vital nodes identification allows us to understand the roles that different nodes play in the structure of a network. However, quantifying centrality in complex networks with various topological structures is not an easy task. In this paper, we introduce a novel definition of entropy-based centrality, which can be applicable to weighted directed networks. By design, the total power of a node is divided into two parts, including its local power and its indirect power. The local power can be obtained by integrating the structural entropy, which reveals the communication activity and popularity of each node, and the interaction frequency entropy, which indicates its accessibility. In addition, the process of influence propagation can be captured by the two-hop subnetworks, resulting in the indirect power. In order to evaluate the performance of the entropy-based centrality, we use four weighted real-world networks with various instance sizes, degree distributions, and densities. Correspondingly, these networks are adolescent health, Bible, United States (US) airports, and Hep-th, respectively. Extensive analytical results demonstrate that the entropy-based centrality outperforms degree centrality, betweenness centrality, closeness centrality, and the Eigenvector centrality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.