Besides genome editing, CRISPR-Cas12a has recently been used for DNA detection applications with attomolar sensitivity but, to our knowledge, it has not been used for the detection of small molecules. Bacterial allosteric transcription factors (aTFs) have evolved to sense and respond sensitively to a variety of small molecules to benefit bacterial survival. By combining the single-stranded DNA cleavage ability of CRISPR-Cas12a and the competitive binding activities of aTFs for small molecules and double-stranded DNA, here we develop a simple, supersensitive, fast and high-throughput platform for the detection of small molecules, designated CaT-SMelor ( C RISPR-Cas12a- and aT F-mediated s mall m ol e cu l e detect or ). CaT-SMelor is successfully evaluated by detecting nanomolar levels of various small molecules, including uric acid and p -hydroxybenzoic acid among their structurally similar analogues. We also demonstrate that our CaT-SMelor directly measured the uric acid concentration in clinical human blood samples, indicating a great potential of CaT-SMelor in the detection of small molecules.
Coenzyme Q10 (CoQ10) is an important component of the respiratory chain in humans and some bacteria. As a high-value-added nutraceutical antioxidant, CoQ10 has excellent capacity to prevent cardiovascular disease. The content of CoQ10 in the industrial Rhodobacter sphaeroides HY01 is hundreds of folds higher than normal physiological levels. In this study, we found that overexpression or optimization of the synthetic pathway failed CoQ10 overproduction in the HY01 strain. Moreover, under phosphate- limited conditions (decreased phosphate or in the absence of inorganic phosphate addition), CoQ10 production increased significantly by 12% to220 mg/L, biomass decreased by 12%, and the CoQ10 productivity of unit cells increased by 27%. In subsequent fed-batch fermentation, CoQ10 production reached 272 mg/L in the shake-flask fermentation and 1.95 g/L in a 100-L bioreactor under phosphate limitation. Furthermore, to understand the mechanism associated with CoQ10 overproduction under phosphate- limited conditions, the comparatve transcriptome analysis was performed. These results indicated that phosphate limitation combined with glucose fed-batch fermentation represented an effective strategy for CoQ10 production in the HY01. Phosphate limitation induced a pleiotropic effect on cell metabolism, and that improved CoQ10 biosynthesis efficiency was possibly related to the disturbance of energy metabolism and redox potential.
The versatile photosynthetic α-proteobacterium Rhodobacter sphaeroides , has recently been extensively engineered as a novel microbial cell factory (MCF) to produce pharmaceuticals, nutraceuticals, commodity chemicals and even hydrogen. However, there are no well-characterized high-activity promoters to modulate gene transcription during the engineering of R. sphaeroides . In this study, several native promoters from R. sphaeroides JDW-710 (JDW-710), an industrial strain producing high levels of co-enzyme Q 10 (Q 10 ) were selected on the basis of transcriptomic analysis. These candidate promoters were then characterized by using gusA as a reporter gene. Two native promoters, P rsp _ 7571 and P rsp _ 6124 , showed 620% and 800% higher activity, respectively, than the tac promoter, which has previously been used for gene overexpression in R. sphaeroides. In addition, a P rsp _ 7571 -derived synthetic promoter library with strengths ranging from 54% to 3200% of that of the tac promoter, was created on the basis of visualization of red fluorescent protein (RFP) expression in R. sphaeroides . Finally, as a demonstration, the synthetic pathway of Q 10 was modulated by the selected promoter T334* in JDW-710; the Q 10 yield in shake-flasks increased 28% and the production reached 226 mg/L . These well-characterized promoters should be highly useful in current synthetic biology platforms for refactoring the biosynthetic pathway in R. sphaeroides -derived MCFs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.