Impaired immunity in late stage cancer patients is not limited to anti-tumor responses, as demonstrated by poor vaccination protection and high susceptibility to infection 1 – 3 . This has been largely attributed to chemotherapy-induced impairment of innate immunity such as neutropenia 2 , whereas systemic effects of tumors on hematopoiesis and adoptive immunity remain incompletely understood. Here we observed anemia associated with severe deficiency of CD8 + T cell responses against pathogens in treatment-naïve mice bearing large tumors. Specifically, we identify CD45 + erythroid progenitor cells (CD71 + TER119 + , EPCs) as robust immunosuppressors. CD45 + EPCs, induced by tumor growth-associated extramedullary hematopoiesis, accumulate in the spleen to become a major population, outnumbering regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). The CD45 + EPC transcriptome closely resembles that of MDSCs, and, like MDSCs, reactive oxygen species production is a major mechanism underlying CD45 + EPC-mediated immunosuppression. Similarly, an immunosuppressive CD45 + EPC population was detected in cancer patients with anemia. These findings identify a major population of immunosuppressive cells that likely contributes to the impaired T cell responses commonly observed in advanced cancer patients.
Epstein-Barr virus (EBV) infection is ubiquitous worldwide and is associated with multiple cancers, including nasopharyngeal carcinoma (NPC). The importance of EBV viral genomic variation in NPC development and its striking epidemic in southern China has been poorly explored. Through large-scale genome sequencing of 270 EBV isolates and two-stage association study of EBV isolates from China, we identified two non-synonymous EBV variants within BALF2 strongly associated with the risk of NPC (odds ratio (OR) = 8.69, P=9.69×10−25 for SNP 162476_C; OR = 6.14, P=2.40×10−32 for SNP 163364_T). The cumulative effects of these variants contributed to 83% of the overall risk of NPC in southern China. Phylogenetic analysis of the risk variants revealed a unique origin in Asia, followed by clonal expansion in NPC-endemic regions. Our results provide novel insights into NPC endemic in southern China and also enable the identification of high-risk individuals for NPC prevention.
BaCKgRoUND aND aIMS: Cancer-associated fibroblasts (CAFs) are key players in multicellular, stromal-dependent alterations leading to HCC pathogenesis. However, the intricate crosstalk between CAFs and other components in the tumor microenvironment (TME) remains unclear. This study aimed to investigate the cellular crosstalk among CAFs, tumor cells, and tumor-associated neutrophils (TANs) during different stages of HCC pathogenesis. appRoaCH aND ReSUltS: In the HCC-TME, CAFderived cardiotrophin-like cytokine factor 1 (CLCF1) increased chemokine (C-X-C motif ) ligand 6 (CXCL6) and TGFβ secretion in tumor cells, which subsequently promoted tumor cell stemness in an autocrine manner and TAN infiltration and polarization in a paracrine manner. Moreover, CXCL6 and TGFβ secreted by HCC cells activated extracellular signal-regulated kinase (ERK) 1/2 signaling of CAFs to produce more CLCF1, thus forming a positive feedback loop to accelerate HCC progression. Inhibition of ERK1/2 or CLCF1/ciliary neurotrophic factor receptor signaling efficiently impaired CLCF1-mediated crosstalk among CAFs, tumor cells, and TANs both in vitro and in vivo. In clinical samples, up-regulation of the CLCF1−CXCL6/TGFβ axis exhibited a marked correlation with increased cancer stem cells, "N2"-polarized TANs, tumor stage, and poor prognosis. CoNClUSIoNS:This study reveals a cytokine-mediated cellular crosstalk and clinical network involving the CLCF1− CXCL6/TGFβ axis, which regulates the positive feedback loop among CAFs, tumor stemness, and TANs, HCC progression, and patient prognosis. These results may support the CLCF1 cascade as a potential prognostic biomarker and suggest that selective blockade of CLCF1/ciliary neurotrophic factor receptor or ERK1/2 signaling could provide an effective therapeutic target for patients with HCC. (Hepatology 2021;73:1717-1735. M ore than 80% of HCCs are characterized by extensive liver fibrosis caused by the activation, proliferation, and accumulation of fibroblasts. (1) A hallmark feature of the tumor microenvironment (TME) of HCC is the mass of cancer-associated fibroblasts (CAFs), which has been extensively reported to influence HCC progression. (1)
The concept of cancer stem cells (CSCs) proposes that solely CSCs are capable of generating tumor metastases. However, how CSCs maintain their invasion and migration abilities, the most important properties of metastatic cells, still remains elusive. Here we used CD133 to mark a specific population from human ovarian cancer cell line and ovarian cancer tissue and determined its hyperactivity in migration and invasion. Therefore, we labeled this population as cancer stem-like cells (CSLCs). In comparison to CD1332 non-CSLCs, chemokine CCL5 and its receptors, CCR1, CCR3, and CCR5, were consistently upregulated in CSLCs, and most importantly, blocking of CCL5, CCR1, or CCR3 effectively inhibits the invasive capacity of CSLCs. Mechanistically, we identified that this enhanced invasiveness is mediated through nuclear factor jB (NF-jB) activation and the consequently elevated MMP9 secretion. Our results suggested that the autocrine activation of CCR1 and CCR3 by CCL5 represents one of major mechanisms underlying the metastatic property of ovarian CSLCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.